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Abstract. We describe a new incremental algorithm for training linear threshold
functions: the Relaxed Online Maximum Margin Algorithm, or ROMMA. ROMMA
can be viewed as an approximation to the algorithm that repeatedly chooses the
hyperplane that classifies previously seen examples correctly with the maximum
margin. It is known that such a maximum-margin hypothesis can be computed by
minimizing the length of the weight vector subject to a number of linear constraints.
ROMMA works by maintaining a relatively simple relaxation of these constraints
that can be efficiently updated. We prove a mistake bound for ROMMA that is
the same as that proved for the perceptron algorithm. Our analysis implies that
the maximum-margin algorithm also satisfies this mistake bound; this is the first
worst-case performance guarantee for this algorithm. We describe some experiments
using ROMMA and a variant that updates its hypothesis more aggressively as
batch algorithms to recognize handwritten digits. The computational complexity and
simplicity of these algorithms is similar to that of perceptron algorithm, but their
generalization is much better. We show that a batch algorithm based on aggressive
ROMMA converges to the fixed threshold SVM hypothesis.

Keywords: Online Learning, Large Margin Classifiers, Perceptrons, Support Vector
Machines.

1. Introduction

The perceptron algorithm [38, 39] and the maximum-margin classi-
fier [4] have similar theoretical bases, but different strengths. In the
case of linearly separable data, Block [3], Novikoff [33] and Minsky
and Papert [31] showed that the number of mistakes made by the
perceptron algorithm is upper bounded by a function of the margin, i.e.
the minimal distance from any instance to the separating hyperplane.
Freund and Schapire [11] generalized this result to the inseparable
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case. The maximum-margin algorithm uses quadratic programming to
find the weight vector that classifies all the training data correctly
and maximizes the margin. Generalization guarantees in terms of the
margin have also been given for this algorithm [44, 41, 2, 9].

When comparing these and other algorithms, it is worthwhile to
keep in mind the different types of setting where they may be applied.
In a batch setting, an algorithm has a fixed collection of examples in
hand, and uses them to construct a hypothesis, which is used thereafter
for classification without further modification. In an online setting, the
algorithm continually modifies its hypothesis as it is being used; it
repeatedly receives a pattern, predicts its classification, finds out the
correct classification, and possibly updates its hypothesis accordingly.
The maximum-margin algorithm is most naturally thought of as a
batch algorithm, while the perceptron algorithm is an online algorithm.

An algorithm designed for either of the above settings can be con-
verted to the other. One could use a batch algorithm in an online setting
by repeatedly applying the algorithm to all the pattern-classification
pairs encountered up to some point in time. The most common way
to convert an online algorithm into a batch algorithm is to repeatedly
cycle through a dataset, processing the examples one at a time until
the algorithm converges in some sense, although a variety of other
conversions have been proposed [14, 21, 30, 17].

In batch settings, the maximum-margin algorithm is typically slower
than the perceptron algorithm, but generalizes better [11]. On the other
hand, the perceptron algorithm is more suitable for online settings.

Both the perceptron algorithm and the maximum-margin algorithm
can be applied in conjunction with kernel functions [1, 4] to enable
the efficient use of large collections of features that are functions of
a problem’s raw features. After the patterns are embedded into the
expanded feature space, the data is often linearly separable.

In this paper, we design and analyze a new simple online algorithm
called ROMMA (the Relaxed Online Maximum Margin Algorithm)
for classification using a linear threshold function. ROMMA has similar
time complexity to the perceptron algorithm, but its generalization
performance in our experiments is much better on average. Moreover,
ROMMA can be applied with kernel functions to run efficiently when
patterns are embedded in high-dimensional feature spaces in certain
ways.

As mentioned above, there are a variety of ways to decide on the best
prediction rule given the sequence of different classifiers that an online
algorithm such as ROMMA generates [14, 29, 17, 11|. The majority
voting method proposed by Freund and Schapire [11], applying the
leave-one-out method of Helmbold and Warmuth [17], has the effect
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of improving the distribution of margins of the training examples. For
a detailed analysis, see [40]. Experiments show that the voted percep-
tron algorithm has better performance than the standard perceptron
algorithm [11]. In this paper, the final prediction vector of ROMMA is
used to predict labels of the test set, and how to apply the leave-one-
out method to vote different prediction vectors produced by ROMMA
is analyzed and discussed in [27].

We conducted experiments similar to those performed by Cortes and
Vapnik [8] and Freund and Schapire [11] on the problem of handwritten
digit recognition. We tested the standard perceptron algorithm, the
voted perceptron algorithm (for details, see [11]) and our new algo-
rithm, using the polynomial kernel function. We found that ROMMA
performed better than the standard perceptron algorithm, and an ag-
gressive variant of ROMMA had slightly better performance than the
voted perceptron.

In many treatments of algorithms using linear threshold hypotheses,
the threshold is fixed at 0 (see [18]). This is often seen to be without
loss of generality; an extra feature can be added that always takes the
value of —1, and then the weight corresponding to that feature plays
the role of a threshold. When the margin of the hypothesis is con-
sidered, however, the situation is more complicated, since the margin
of the 0-threshold hypothesis might be less than the margin of the
corresponding hypothesis with a variable threshold (see subsection 5.2
for the discussion). However, a related reduction was described and
discussed in the context of the perceptron algorithm by Cristianini and
Shawe-Taylor [9]. A fact implicit in their analysis implies that, for many
analyses concerning the margin of linear threshold hypothesis, one can
assume a fixed threshold of 0 while losing only a small constant factor;
we write this down in Section 4.

The paper is organized as follows. In Section 2, we describe ROMMA
in enough detail to determine its predictions, and prove a mistake
bound for it. In Section 3, we describe ROMMA in more detail. The
observation about reduction to the 0-threshold case is covered in Sec-
tion 4. In Section 5, we compare the experimental results of ROMMA
and an aggressive variant of ROMMA with the perceptron and the
voted perceptron algorithms. We also discuss scaling of the features in
this section. Some related work [37, 13, 22, 25] and comparisons are
discussed in Section 6. We conclude with Section 7.

paper.tex; 23/03/2001; 10:16; p.3



2. A mistake-bound analysis

2.1. THE ONLINE ALGORITHMS

For concreteness, our analysis will concern the case in which instances
(also called patterns) and weight vectors are in R" for fixed n € N, and
the ordinary dot product is used, but it is easy to see that our analysis
generalizes to arbitrary inner product spaces, and therefore that our
results also apply when kernel functions are used.

In the standard online learning model [28], learning proceeds in
trials. In the tth trial, the algorithm is first presented with an instance
Z; € R™. Next, the algorithm outputs a prediction ¢; of the classifi-
cation of Z;. Finally, the algorithm finds out the correct classification
yr € {—1,1}. If gy # y¢, then we say that the algorithm makes a mistake.
It is worth emphasizing that in this model, when making its prediction
for the ¢th trial, the algorithm only has access to instance-classification
pairs for previous trials.

All of the online algorithms that we will consider work by maintain-
ing a weight vector w; which is updated between trials, and predicting
9 = sign(wy - Z1), where sign(z) is 1 if z is positive, —1 if z is negative,
and 0 otherwise.!

The perceptron algorithm. The perceptron algorithm, due to
Rosenblatt [38, 39], starts off with @; = 0. When its prediction differs
from the label y;, it updates its weight vector by w1 = W + vy & If
the prediction is correct then the weight vector is not changed.

The next three algorithms that we will consider assume that all of
the data seen by the online algorithm is collectively linearly separable,
i.e. that there is a weight vector i such that for all each trial ¢, y; =
sign(@ - #;). When kernel functions are used, this is often the case in
practice.

The ideal online maximum margin algorithm. On each trial
t, this algorithm chooses a weight vector ; for which for all previous
trials s < t, sign(w; - &s) = ys, and which maximizes the minimum
distance of any Zs for s < t to the separating hyperplane. It is known
[4, 45] that this can be implemented by choosing w; to minimize |||
subject to the constraints that ys(w; - Zs) > 1 for all s < ¢. These
constraints define a convex polyhedron in weight space which we will
refer to as P;.

The relaxed online maximum margin algorithm. This is our
new algorithm. The first difference is that trials in which mistakes are

! The prediction of 0, which ensures a mistake, is to make the proofs simpler.

The usual mistake bound proof for the perceptron algorithm goes through with this
change.
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not made are ignored. The second difference is in how the algorithm
responds to mistakes. The relaxed algorithm starts off like the ideal
algorithm. Before the second trial, it sets wo to be the shortest weight
vector such that y;(ws - Z1) > 1. If there is a mistake on the second
trial, it chooses w3 as would the ideal algorithm, to be the smallest
element of

{0 y1 (- 71) > 1} N{d 2 yo(d - 72) > 1} (1)

However, if the third trial is a mistake, then it behaves differently.
Instead of choosing w4 to be the smallest element of

{W:y1 (0 - Z1) > 1} N A{d - yo (W - F2) > 1} N {2 y3(wf - 73) > 1},
it lets w4 be the smallest element of
{ : (@3 - ) > |Jss]|*} N {@ 2 ys(i - F3) > 1}

This can be thought of as, before the third trial, replacing the poly-
hedron defined by (1) with the halfspace {w : (w3 - @) > |w3||?} (see
Figure 1). Note that this halfspace contains the polyhedron of (1); in

= X

o

L

. N

origin
Figure 1. In ROMMA, a convex polyhedron in weight space consisting of all weight

vectors satisfying two linear constraints is replaced with the halfspace with the same
smallest element.

fact, it contains any convex set whose smallest element is ws. Thus, it
can be thought of as the least restrictive convex constraint for which the
smallest satisfying weight vector is 3. Let us call this halfspace H3. The
algorithm continues in this manner. If the ¢th trial is a mistake, then
W41 is chosen to be the smallest element of Hy N {@ : yy(w - 7)) > 1},
and Hy, 1 is set to be {0 : (W1 - W) > |[wWyy1]|?}. If the tth trial is
not a mistake, then w1 = W; and Hy1q = Hy. We will call Hy the old
constraint, and {W : y; (W - Z;) > 1} the new constraint.

Note that after each mistake, this algorithm needs only to solve a
quadratic programming problem with two linear constraints. In fact,
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there is a simple closed-form expression for ;41 as a function of Wy, Z;
and y; that enables it to be computed incrementally using time similar
to that of the perceptron algorithm. This is described in Section 3.

The relaxed online maximum margin algorithm with ag-
gressive updating. The algorithm is the same as the previous algo-
rithm, except that an update is made after any trial in which y (@ -
%) < 1, not just after mistakes.

2.2. UPPER BOUND ON THE NUMBER OF MISTAKES MADE

Now we prove a bound on the number of mistakes made by ROMMA.
As in previous mistake bound proofs (e.g. [30]), we will show that
mistakes result in an increase in a “measure of progress”, and then
appeal to a bound on the total possible progress. Our proof will use
the squared length of w; as its measure of progress.

We begin with a property (Lemma 1) which is applicable to both
ROMMA and aggressive ROMMA. Although Lemma 2 is applicable
only to ROMMA, and our mistake bound analysis can proceed without
it, it is useful in deriving our efficient implementation in Section 3.

LEMMA 1. On any run of ROMMA on linearly separable data, if there
was an update after trial t, then the new constraint is binding at the
new weight vector, i.e. yy (W1 - ) = 1.

Proof: For the purpose of contradiction, suppose the new constraint is
not binding at the new weight vector w;41. Since w; fails to satisfy this
constraint, the line connecting ;1 and w; intersects with the border
hyperplane of the new constraint, and we denote the intersecting point
as Wy. Then @, can be represented as W, = awy+(1—a)wy11,0 < a < 1.

Since the squared Euclidean length || - ||? is a convex function, the
following holds:

11> < all@]|* + (1 — @) |

Note that w; is the unique smallest member of Hy 1 N {w : y;_1 (& -
Zy—1) > 1} due to the strict convexity of the objective function || -
|| [10, 5] and @41 # Wy, we have ||wW||> < ||[Wyy1]/?, which implies
[Fl|* < ([ 7. (2)
Since Wy and W1 are both in Hy, @, is too, and hence (2) contradicts

the definition of w41. 0

LEMMA 2. On any run of ROMMA on linearly separable data, if trial
t was a mistake, and not the first one, then the old constraint is binding
at the new weight vector, i.e. (W1 - W;) = ||w|?.
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Proof: Let A; be the plane of weight vectors that make the new
constraint tight, i.e.

At = {’U_)' : yt(u_i .ft) = 1}

By Lemma 1, w1 € Ay. Let @ = 4,73 /||%¢||? be the element of A; that
is perpendicular to it. Then each W € A; satisfies:

1)1 = [l |1* + I — a@|*.

Therefore the length of a vector  in A; is minimized when % = a@; and
is monotone in the distance from @ to @;. Thus, if the old constraint
is not binding, then w11 = d;, since otherwise the solution could be
improved by moving w41 a little bit toward @;. But the old constraint
requires that

(B - Wy y1) > |5,

and if Wy, 1 = d@; = y,7;/| %)%, this means that
(s - (yee/ | El|%)) > |||
Rearranging, we get
ye(Ty - ) > ||Z]||5:]* > 0,

( [|z¢]] > 0 follows from the fact that the data is linearly separable,
and ||w¢|| > 0 follows from the fact that there was at least one previous
mistake). But since trial ¢ was a mistake, y;(;-Z;) < 0, a contradiction.
0

We proved Lemma 1 and Lemma 2 using a direct, geometrically
intuitive argument. In fact they are also consequences of the KKT
conditions (see [9]), which was pointed out by anonymous referees.

Now we’re ready to prove the mistake bound.

THEOREM 3. Choose £ € N, and a sequence (Z1,y1),- -+, (Ze,ye) of
pattern-classification pairs in R™ x {—1,+1}. Let R = max, ||Z]|. If
there is a weight vector @ such that y,(@-%y) > 1 for all 1 <t < £, then
the number of mistakes made by ROMMA on (Z1,y1),- -, (Ze,ye) is at
most R?||i]|?.

Proof: First, we claim that for all ¢, ¥ € H,. This is easily seen since
i satisfies all the constraints that are ever imposed on a weight vector,
and therefore all relaxations of such constraints. Since w; is the smallest
element of Hy, we have ||| < ||d]|.

We have Wy = y171/||Z1]|?, and therefore ||| = 1/||Z1|| > 1/R
which implies ||@2|? > 1/R2?. We claim that if any trial ¢ > 1 is a
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Figure 2. Progress made by ROMMA on trial ¢.

mistake, then |z 1]|? > |J]|> + 1/R2. This will imply by induction
that after M mistakes, the squared length of the algorithm’s weight
vector is at least M/R2?, which, since all of the algorithm’s weight
vectors are no longer than |||, will complete the proof.

Choose an index ¢ > 1 of a trial in which a mistake is made. Let

Ay = {0y (0 - T3) = 1}
and
By = {w : (@ - @) = ||di]|*}-
By Lemmas 1 and 2, w1 € A; N By.
The distance from w; to A; (call it p;) satisfies
_ lweldi - 3) 1) 1 1

= Z 1= 2 X (3)
1] 1zl — R

Pt

since the fact that there was a mistake in trial ¢ implies y;(Z; - ;) < 0.
As shown in Figure 2, since w1 € Ay,

w1 — we|l > pr- (4)
Because w; is the normal vector of B; and w1 € By, we have
@41 l* = @] + o1 — @],
Thus, applying (3) and (4), we have
[ G I* = 1|51 = [[Ger1 — @|* > pf > 1/R?,

which, as discussed above, completes the proof (where R = max{_; ||Z))-
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Since, as is easily proved by induction, for all ¢, P, C Hy, we have
the following, which complements analyses of the maximum margin
algorithm using independence assumptions [4, 45, 41].

COROLLARY 4. Choose £ € N, and a sequence (Z1,y1), -+, (Z¢,Ye)
of pattern-classification pairs in R™ x {—1,+1}. Let R = max, ||Z||. If
there is a weight vector @ such that y (@ -%y) > 1 for all 1 < t < ¥4,
then the number of mistakes made by the ideal online mazimum margin
algorithm on (Z1,y1),-- -, (Z¢, ye) is at most R2||i]|?.

Next, we turn to an analysis of aggressive ROMMA.

THEOREM 5. Choose § > 0, £ € N, and a sequence of pattern-
classification pairs (Z1,y1),- -, (Ze,ye) from R™ x {—1,+1}. Let R =
maxy ||Z¢||. If there is a weight vector @ such that y, (4 - Zy) > 1 for all
1<t <Y, then if (Z1,y1), -+, (Ze,ye) are presented online, the number
of trials in which aggressive ROMMA has y,(Wy - T4) < 1— 0 is at most
R2d)?/8%.

Proof: For positive J, suppose after trial ¢ of aggressive ROMMA, an
update is made and y; (W - ;) < 1 — §. We claim that the progress
made is always at least 2/R?, which will complete the proof. Define
pt, Ay and By as in the proof of Theorem 3.

Lemma 1 still holds for aggressive ROMMA, while Lemma 2 may
not hold, i.e. the old constraint may not be binding at the new weight
vector wy1. (See Figure 3.)

Since ’u—J'H_l € Ay, ||U7t — U_]’H—IH > pg, which implies

1@ — D1l > pf- (5)

Since w1 satisfies the old constraint,

(Wiq1 - By) > ||| = (- By).- (6)
Thus
| Be1]1? = [|(Wigr — W) + B>
= ((Wey1 — Wy) - (Wyg1 — Wy)) + 2((Wpq1 — W) - Wy) + (W - W)
> p} + ||,

by (5) and (6). Since p; > §/R, this completes the proof.

[
For a certain way of converting aggressive ROMMA to a batch algo-

rithm, we can prove that it converges to the (fixed threshold) maximum
margin hypothesis. The conversion is as follows: given (Z1,y1), ..., (Z¢, y¢),
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Figure 3. Progress made by aggressive ROMMA on trial ¢ when ;41 is not on the
border hyperplane of the old constraint.

— initialize ROMMA’s hypothesis @ to 0, and
— repeatedly

e choose i € {1, ...,¢} to minimize y;(¥W - Z;)
o if y;(w-%;) < 1, perform the aggressive ROMMA update on
Z; and y;.

Let us call the converted algorithm Funnel ROMMA.

THEOREM 6. Choose £ € N, and a sequence of pattern-classification
pairs (T1,y1),- -+, (Ze,ye) from R™ x {—1,41}. Let the (fized thresh-
old) mazimum margin hypothesis for (Z1,y1),- -, (Ze,ye) be the unique
weight vector @ € R™ that minimizes |if]|? subject to the constraints
that y;(@-%;) > 1 for all 1 <i < L.

Funnel ROMMA ’s weight vector approaches that of the fixed thresh-
old mazimum margin hypothesis in the limit.

Proof: Choose € > 0. Theorem 5 implies that after some point in time,
for all hypothesis weight vectors @ that Funnel ROMMA produces and
all 1 <4 <4, y;(W-3;) >1— ﬁ Choose any of Funnel ROMMA'’s
hypotheses after that point in time, and call it @. We claim that || —
|| < €, which will complete the proof.

Let § = ﬁg Note that, for all 1 <4 </,

W
Yi (mfﬂz) > 1.
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Let P be the polytope in weight space consisting of all weight vectors
¥ such that for all ¢, y;(7 - #;) > 1. Since @ is the shortest weight vector
in P, all elements of P are in the halfspace {¢': (¥- %) > (4 - 4)}. Thus,

in particular, (% . ﬂ') > (@ - 1), which implies
(w-@) > (1-96)(a-aq). (7)

On the other hand, the design of (aggressive) ROMMA guarantees that
at any time £, ; is the smallest element of H;, and remember that P
is contained in H;. Thus

]| < [l (8)
Now,
@ —i||? = (&%) — 2@ - @) + (@ - @)
< (@ - @) — (1 - 26)(il - @) (by (7))
< 26(- 1) (by (8))
< €,
completing the proof. 0

That 4 in Theorem 6 is unique follows directly from the fact that it
minimizes a strictly convex function subject to a convex constraint.

Funnel ROMMA was designed for the convenience of proving conver-
gence. We have not worked out a proof of convergence for more ordinary
conversions yet. In subsection 6.1 we use a different conversion, which
seems more efficient.

3. An efficient implementation

3.1. IMPLEMENTATION OF ROMMA

When the prediction of ROMMA differs from the expected label, ac-

cording to Lemma 1 and Lemma 2, the algorithm chooses ;1 to
=T

minimize ||[Wi41]| subject to Aw;1 = b, where A = (1%1% ) and b =
t

=112
( il ) . Routine calculation shows that

B = AT(AAT) b
<||ift||2||ﬂ7t||2 — yi (W - ft)) @+ ( |1 (ye — (1271: : 5@)2> .

—

5 5 = = -~ - Tt.
||~77t||2||wt||2 - (wt : ﬂft)2 ||~77t||2||wt||2 — (Wt 'iEt)

(9)
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If on trials ¢ in which a mistake is made,

NZP B — e (0 - )

= — — — 10
A FAI AR A (1)
and o Lo
g, = NPy = (- 7)) (11)
(| Z4][2] 0|2 — (g - Z4)?”
and on other trials ¢; = 1 and d; = 0, then always
Wiyl = cyWy + diTy, (12)

and

[@s4111% = GG llB]* + 2cody (0, - Z) + d |15
Note that, due to Lemmas 1 and 2, the denominators in (9) will never
be zero.

Since the computations required by ROMMA involve inner products
together with a few operations on scalars, we can apply the kernel
method to our algorithm, efficiently solving the original problem in a
very high dimensional space. Computationally, we only need to modify
the algorithm by replacing each inner product computation (Z; - Z;)
with a kernel function computation K(Z;, Z;).

To make a prediction for the tth trial, the algorithm must compute
the inner product between #; and prediction vector ;. In order to
apply the kernel function, as in [4, 11], we store each prediction vector
w; in an implicit manner, as the weighted sum of examples on which
mistakes occur during the training. In particular, each ; is represented

as
t—1 t—1 t—1
wy= | [[ e | @+ I e |did;, (13)
J

j=1 =1 \n=7+1
where ), is the initial weight vector (see subsection 5.2 on how to set
the initial weight vector in our experiments). If we let

t—1
oy = H c;j (14)
7j=1
and
t—1
ajZ(H Cn)dj,léjﬁt—l, (15)
n=j+1

then (13) can be written as

t—1
Wy ==(Ioﬂﬁ,+—jzztmji%.
Jj=1
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Formula (13) may seem daunting; however, making use of the recur-
rence (Wyt1-T) = cy(Wy - T) + dy(Fy - T), it is obvious that the complexity
of ROMMA is similar to that of the perceptron algorithm when kernel
functions are applied (in the update of the perceptron algorithm, ¢; = 1,
dy = 1y however the kernel computation is the main computational
cost, and making a prediction for ¢th trial involves p kernel function
evaluations if p updates have been made so far). This was born out by
our experiments in Section 5.

3.2. IMPLEMENTATION OF AGGRESSIVE ROMMA

Suppose an update is needed on trial ¢ in aggressive ROMMA, i.e.
y¢(Wy - T) < 1, then the new constraint is binding at the new weight
vector w1 by Lemma 1, but the old constraint may not be binding at
W41 (see the proof of Lemma 2 for the reason). If the old constraint is
not binding at the new weight vector w1, W11 is the smallest vector

x

satisfying only the new constraint, i.e. w1 = ﬁ%”g; otherwise Wy, is

calculated as in ROMMA. The old constraint is not binding at the new
weight vector w1 and satisfied by it if and only if

(W - Wyp1) > |||

1
Le. Y (Wy - Te) > |24 || 1>
So we get the following implementation of aggressive ROMMA:

If 1> yy(diy - ) > |25, then s = 455,
otherwise ;1 = ¢, + di %y,

where ¢; and d; are expressed in (10) and (11) respectively.

3.3. TWO OTHER POINTS FOR IMPROVING EFFICIENCY

From (9) and (12) we can find that the dominant computation in our
algorithm is inner products between pairs of instances. Even though
inner product computation may be replaced with a kernel function,
the inner product is still the main factor of speed since kernel functions
usually involve inner product computation.

Our inner product was implemented as the following pseudocodes:

InnerProduct(z1, 22, size)
sum:= 0;
for (i=0;i<size;i++)

if ((z1[i] # 0) && (22[i] #0))

sum:= sum +1z1[z] X z2[i;
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This implementation makes use of sparseness of input since the oper-
ation of comparisons is much faster than the operation of any kind of
multiplication for digital computers. We believe that our sparse inner
product code has a similar effect in exploiting sparseness to storing
input vectors as sparse vectors [37].

The other efficiency comes from the recurrence of update rule (12) in
our new algorithm. In this subsection we assume that the subscript of
the weight vector does not change when no update is made and that we
have enough memory to store the estimated outputs for every training
example. Suppose the weight vector just before going through &; is wr,
then the estimated output for Z; is (Wy - Z;). Provided that the weight
vector is Wryr when Z; is to be gone through again, then the present
estimated output for Z; is

(Wryp - ;)

T4k—1 THk—1 [T+k—1
=| II o|@r-@)+ > | Il en|d(@ry-7),

=T =T n=j+1

where I[ ] is an array, whose jth element represents the index of
the training example on which jth update is made. In other words,
the estimated output (& - £) for training example ¥ can make use of
intermediate results computed before as long as it exists.

4. Reduction to the 0 threshold case

Throughout this paper we restrict our attention to algorithms using hy-
potheses with a threshold of 0. The following motivates this choice. One
can apply it for example to get analogues of Theorem 3, Corollary 4,
and Theorem 5 for the variable threshold case that are a constant factor
worse than the original bounds; similar facts hold concerning PAC-style
generalization guarantees for the maximum-margin algorithm [41, 2, 9].

PROPOSITION 7. ([9]). Let(Z1,91),--., (Ze,ye) be any sequence of pattern-
classification pairs in R™ x {—1,4+1}, and let R = max; ||%;||. Suppose

@ € R™ and 0 € R have the property that for all t € {1,...,£},
yi(@ - Ty — 0) > 1. For each i, form ¥ € R"™! by concatenating an
additional component with value —R to T;. Then there is a weight
vector @' € R™! such that for all t € {1,...,¢}, y(@' - %) > 1, and
|l@'||? < 2||a@||?. (For all t, ||||> < 2R?.)
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5. Experiments

We did some experiments using the perceptron algorithm, ROMMA
and aggressive ROMMA as batch algorithms on the MNIST OCR
database. 2 LeCun et al. [26] have published a detailed comparison
of the performance of some of the best algorithms on this dataset. The
best test error rate they achieved is 0.7%, through boosting on top of
the neural net LeNet4, which was crafted through a series of experi-
ments in architecture, combined with an analysis of the characteristics
of recognition errors. A version of the optimal margin classifier (Soft
Margin SVMs) [8] achieves a test error rate of 1.1%.

5.1. EXPERIMENTAL SETTINGS

Every example in this database has two parts, the first is a 28 x 28
matrix which represents the image of the corresponding digit. Each
entry in the matrix takes on values from {0, - --,255}. The second part
is a label taking on values from {0,---,9}. The dataset consists of
60,000 training examples and 10, 000 test examples.

To cope with multiclass data, we trained the perceptron algorithm,
ROMMA or aggressive ROMMA once for each of the 10 labels. When
training on class | € {0,---,9}, we replaced each labeled instance
(Z;,y;) by the binary-labeled instance (%, b;), where b; = +1 if y; = [,
otherwise b; = —1. Classification of a test pattern is done according to
the maximum output of these ten classifiers. There are some other ways
to combine many two-class classifiers into a multiclass classifier [36, 12,
24].

To produce output given a test instance Z, besides using the final
hypothesis, we also tried the “voting” method to convert the stan-
dard perceptron algorithm to a batch learning. The “voting” method
is adopted in [11] and is an application of the general leave-one-out
method of [17]. It records the number of trials each prediction vector
survives during the training, which is denoted sur;; in the following,
where [ represents that the classifier is for label [, ¢ is the index of
the prediction vector. If k; prediction vectors are produced during the
training, the output generated by the voting method is:

ki
Z surg; * sign(u‘;’l,i . f)
i=1
We obtained a batch algorithm from our new online algorithm in
the usual way, making a number of passes over the dataset and using

% National Institute for Standards and Technology, special database 3. See
http://www.research.att.com/~yann/ocr for information on obtaining this dataset.
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the final weight vector to classify the test data because the above vot-
ing method sometimes hurts our new online algorithm. How to apply
the general leave-one-out method and vote different prediction vectors
produced by (aggressive) ROMMA is analyzed and discussed in [27].

5.2. KERNEL FUNCTIONS AND BIAS

In the experiments we adopt the following polynomial kernel function
K@i, 7)) = (1 + (& - 7). (16)

This kernel function corresponds to using an expanded collection of
features including all products of at most d components of the original
feature vector (see [45]). Let us refer to the mapping from the original
feature vector (say in R™) to the expanded feature vector (say in RP)
as ®. Note that one component of ®(%) is always 1, and without loss
of generality, we take it as the first component of ®(Z). Therefore the
first component of the weight vector can be viewed as a bias. In all our
experiments, we set the initial weight vector @; = ®(0) rather than 0
to speed up the learning of the coefficient corresponding to the bias.

Hence
t—1

t—1 t—1 [ t-1
bias:a0+2ai:ch+Z(H cn>di (17)
i=1 j=1 i=1 \n=i+1
according to (14) and (15), where c; is always positive, and d; may
be positive or negative. Note that «g is the coefficient of w; and that
in the standard perceptron algorithm, ¢; = 1, d; = y; for those train-
ing examples on which mistakes were made, hence «q is always 1, so
whether @, = ®(0) or @; = 0 makes little difference for the perceptron
algorithm.

With the help of the polynomial kernel function in (16), ROMMA
and aggressive ROMMA make predictions by the linear functions with
implicit bias, however, the solution which aggressive ROMMA con-
verges to when repeatedly cycling through the examples may be dif-
ferent from the solution which support vector machines find, because
in the expanded high dimensional feature space, the task of support
vector machines is to

min L2 = LY, w?

subject to y;[(@- ®(Z;)) +b] > 1 j=1...¢,
where £ is the number of training examples. The above formula for
the squared length of w is due to that for support vector machines
adopting this kernel function, wy = Zle yjo; = 0, where a; > 0 are
Lagrange multipliers (see Section 6 for the Wolfe dual problem). The
task of aggressive ROMMA is to
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min sldll? = 3 (w? + 3¢5 w})
subject to y; (@ - ®(Z;)) > 1 j=1...L

There exists some simple problems where w1 = Y, a; and Y0, w?
which aggressive ROMMA converges to coincide with b and 37, w?
which support vector machines obtain. However, we haven’t identified
yet the conditions on which the above coincidence occurs or does not
occur. Intuitively there should be some problems where the coincidence
does not occur, for example, SVM solution favors large bias, but ag-
gressive ROMMA solution favors small or moderate bias due to the
objective function % (bias® + 38 , w?).

Note that the reduction to the 0 threshold case in Proposition 7
involved adding a component with value —R (R is the length of the
longest feature vector), while using the polynomial kernel gives us a
component with value 1. By rescaling the components of Z, we can
make the size of the other components small relative to the constant
component, with a similar effect. Scaling of features is discussed further
in the following subsection.

5.3. SCALING AND ITS POSSIBLE EXPLANATIONS

As every entry in the image matrix takes value from {0,---,255},
the order of magnitude of K(Z,%) is about 10?®. For ROMMA and
aggressive ROMMA, ¢; has the order of magnitude of 1, d; has the
order of magnitude of 10726, which might cause round-off error in the
computation of (W - (%)) = ¢i—1 (W1 - Y(Z)) + dp— 1 K(Z, Fp—1). We
scale the data by dividing each entry with 1100 when training with
ROMMA or aggressive ROMMA. It is obvious that there is little excess
in computation if scaling is implemented in the process of dot products.

The advantage brought by the scaling factor of 1100 to ROMMA
and aggressive ROMMA is that both ag and f;% a; in (17) now have
the order of magnitude of 1 instead of ay having the order of magnitude
of 1 and f;% a; having the order of magnitude of 10722 when there
is no scaling. Taking into account that c; is always positive, and d;
may be positive or negative, it’s important to force og and f;% a; to
have the same order of magnitude. Note that the standard perceptron
algorithm does not have this problem (see subsection 5.2 for the reason).
The scaling factor of 255 has a similar but weaker such effect on the
bias.

Scaling may play other roles. In the point of view of kernel methods,
scaling is an operator from the expanded feature space to itself, and the
entropy number of this operator which serves as capacity control may
be minimized over the different choices of scaling factors on the corre-
sponding components of the high dimensional feature space [16, 48, 7.
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It remains open to obtain the optimal scaling operator for polynomial
kernel functions that can be implemented efficiently due to the facts
that it is very hard to calculate the eigenvalues of polynomial kernel
functions (recently Smola et al. gave a method to calculate the eigen-
values of analytic kernel functions on the domain of unit sphere, but
for the domain of unit ball, it is very technical [42]) and that kernel
functions only transform the original input space to high dimensional
feature space implicitly. In the experiment we only tried no scaling, a
scaling factor of 255, and a scaling factor of 1100 for the perceptron
algorithm, ROMMA and aggressive ROMMA, and presented their best
results, i.e. the results of the perceptron algorithm with a scaling vector
of 255, the results of ROMMA and aggressive ROMMA with a scaling
vector of 1100.

5.4. INPUT NOISE

To deal with data which are still linearly inseparable in the high di-
mensional feature space, and/or to improve generalization by trade-off
between empirical estimates and confidence interval, Friess et al. [13]
suggested the use of quadratic slack penalty in the cost function (i.e.
minimize %||w||2 + % > €2), which can be implemented using a slightly
different kernel function [13, 22, 23]:

IC(avk,xj) = IC(avk,xj) + 6kj>\a (18)
where 6;; is the Kronecker delta function, X is a predefined parameter.
We use this method to deal with noise in our experiments.

The derivation of (18) can be obtained by investigating the close
relationship between Gaussian Processes (GP) and SVMs [34, 46, 47].

We give a brief description of it in the following for completeness.
Given arbitrary points z1,---,xzy of the input space, suppose the set

of function values .
F=(f(@),. ., flze)"

have a joint Gaussian prior distribution:

p(f) = o HE TR (),
(2m)¢ det K
where m = (m(z1),---,m(z¢))T is the mean and

K = E[ff"] - "
is the covariance matrix having elements

l((xiaxj)a % j € {15"'a£}'
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For SVMs, the covariance function K (xz;,x;) is completely equivalent
to the kernel function.

Input noise ¢ is defined as a random vector added to the function
value vector f. The simplest case for £ is the independent Gaussian
noise with zero mean and variance matrix Al, where I is the identity
matrix. We use the fact that the process f 4+ & — due to the Gaussianity
of the noise — is also a Gaussian process with the following covariance
matrix:

K=E[(Ff+8F+T - El(f+ONE(F+ 8T = K + AL

Based on the equivalence between the covariance matrix and the matrix
composed of kernel functions in SVMs, (18) was obtained.

If the input noise follows Laplace noise p(§) = %ewp(—(}’ |€]), we
obtain the linear slack penalty in the cost function (i.e. minimizing
%||w||2 + C Y, &), which the soft margin support vector machine in [8,
45] aims to optimize.

5.5. EXPERIMENTAL RESULTS AND THEIR DISCUSSIONS

Since the performance of online learning algorithm is affected by the
order of sample sequence, all the results shown in the tables in the paper
average over 10 random permutations of sample sequence. We present
results for a batch setting until four epochs (the algorithm goes through
all the instances once in one epoch and T in the tables represents the
number of epochs).

We conducted three groups of experiments, one for the perceptron
algorithm (denoted “percep”) and voted perceptron (denoted “vote-
percep”) whose detailed description is in [11], the second for ROMMA,
the third for aggressive ROMMA (denoted “agg-R”).

Mistake numbers are the total number of mistakes made during the
training for the 10 labels. Note that the mistake number of the voted
perceptron algorithm is the same as that of the standard perceptron al-
gorithm since the voting procedure occurs at the predictions of test set,
not in the training process. In aggressive ROMMA, an update is made
during training whenever y(w - £) < 1, hence the update/correction
number is larger than the mistake number, while for the perceptron
algorithm and ROMMA, they are the same. Comparison of mistake
numbers gives some idea of the relative practical utility of the algo-
rithms in online settings. The number of updates during training is the
dominant factor of speed for all three groups according to (9) and (13),
which was verified by our observations.

Data in the first group are scaled with 255, data in the last two
groups are scaled with 1100 (see subsection 5.3 for the reasons of
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scaling of the features). Note that these choices are the best for the
corresponding groups among three alternatives (i.e. no scaling, scaling
factor of 255, and of 1100). All three groups set the initial weight vector
@) to (0) (see subsection 5.2 for the reason).

We first set the degree of the polynomial kernel function in (19) to
4 since in experiments on the same problem conducted in [11], the best
results occur with this value. Test error rates (in percentage), mistake
numbers and update numbers for d = 4 are shown in Table I.

Table I. Experimental results on MNIST data for d = 4

T=| 1| 2| 3| 4|

d=4 percep(scale=255) 2.1 2.14 2.03 1.85
voted-percep 2.23 1.86 1.76 1.71
Mistake No. 7901 | 10421 | 11787 | 12637

ROMMA (scale=1100) 2.48 1.96 1.79 1.77
Mistake No. 7963 9995 | 10971 | 11547

agg-R (scale=1100) 2.14 1.82 1.711 1.67
Mistake No. | 6077 | 7391 | 7901 | 8139
Update No. | 26802 | 39642 | 51853 | 64005

The test error rates in Table I demonstrate that ROMMA has better
performance, and aggressive ROMMA has much better performance
than the standard perceptron algorithm. Aggressive ROMMA has slightly
better performance than voted perceptron. The update numbers in
Table I indicate that the perceptron algorithm and ROMMA has sim-
ilar training time, while aggressive ROMMA has much longer training
time, which coincide with our observations (on average, training for the
perceptron algorithm takes 55 minutes, for ROMMA 51 minutes, and
for aggressive ROMMA 4.5 hours, for four epochs on a PVM cluster
of four Pentium IT 400MHz PCs). Aggressive ROMMA has unpleasant
ratio of performance/training time in the current conversion from on-
line learning to batch learning, we described and implemented a simple
efficient conversion to speed up aggressive ROMMA in subsection 6.1.

Since the standard perceptron algorithm and voted perceptron in [11]
have similar performance with d = 4 and d = 5, and ROMMA and
aggressive ROMMA regularize more than the perceptron algorithm,
we tried higher degrees than 4 for all three groups, and found that
only d = 5 had some interesting results (degrees higher than 5 have
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statistically significantly worse test error rates), which was shown in
Table II.

Table II. Experimental results on MNIST data for d = 5

| r=| 1] 2] 3] 4]

d=5 percep(scale=255) 2.85 2.20 1.97 1.90
voted-percep 2.28 1.95 1.82 1.78
Mistake No. 7912 | 10290 | 11507 | 12176

ROMMA (scale=1100) 2.25 1.83 1.74 1.66
Mistake No. 8076 9734 | 10437 | 10777

agg-R (scale=1100) 2.10 1.78 1.73 1.71
Mistake No. 6465 7511 7820 7939
Update No. | 24134 | 33774 | 42388 | 50437

The error rates and update numbers in Table II show that d = 4
provides better test error rate and similar training time for the standard
perceptron algorithm; d = 5 produces better performance and simi-
lar training time for ROMMA, while d = 5 has similar performance,
but shorter training time for aggressive ROMMA. Both ROMMA and
aggressive ROMMA regularize more than the standard perceptron al-
gorithm, hence d = 5 is expected to have some advantage over d = 4 for
(aggressive) ROMMA, however it remains open to explain why d = 5
provides better performance for ROMMA, but better training time for
aggressive ROMMA.

We control noise via modified kernel function

introduced in subsection 5.4 to deal with data which are still linearly
inseparable in the high dimensional feature space. The parameter A was
decided by a small (1000 training instances and 500 test instances) val-
idation set extracted from MNIST data in our experiments. We found
that for a scaling factor of 255, A should take the value of 5 x 105, and
that for a scaling factor of 1100, A should take the value of 30. The test
error rates (in percentage), mistake numbers and update numbers for
the perceptron algorithm with scale= 255 and d = 4, those for ROMMA
and aggressive ROMMA with scale= 1100 and d = 5 are shown in
Table IIT (d = 4 is a better choice for the perceptron algorithm, and
d = 5 a better choice for ROMMA and aggressive ROMMA based on
Tables I and II).
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Table III. Experimental results with noise control on MNIST data

T:| 1| 2| 3| 4|

d=4 percep 2.71 2.13 2.00 1.93
scale=255 voted-percep 2.23 1.86 1.76 1.73
A=5x10° Mistake No. 7901 | 10417 | 11748 | 12548

d=>5 ROMMA 2.20 1.83 1.72 1.70
scale=1100 Mistake No. 8036 9598 | 10252 | 10580
A=30 agg-R 2.05 1.75 1.68 1.67

Mistake No. 6336 7295 7563 7660
Update No. | 25316 | 35328 | 44268 | 52565

Comparing the results in Table I1I with those in Table I and Table I1,
we find that the method of noise control by introducing a quadratic
slack penalty in the objective function is effective only to ROMMA
and aggressive ROMMA, make little difference to the perceptron algo-
rithm. The possible reason for this may be that (19) was derived by
investigating the close relationship between Gaussian Processes (GP)
and SVMs (see subsection 5.4), and (aggressive) ROMMA is close to
SVMs with fixed threshold, while the perceptron algorithm is rather far
away on this data set. Another explanation might be that the parameter
A we set for the perceptron algorithm is not good enough.

6. Related work

Support Vector Machines (SVMs) [8] manifest an impressive resistance
to overfitting, which can be explained by the small effective V'C dimen-
sion [41]. Their training is performed by minimizing the length of the
weight vector subject to a number of linear constraints when the data
can be perfectly separated in the feature space. Namely, the primal
problem is to minimize the objective function

1

Sla? (20)
subject to

yi[(W - Z;) + 5] > 1 1=1,--+,4, (21)

where £ is the number of training examples.
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The Wolfe dual of the above QP (Quadratic Programming) problem
(20) and (21) is to maximize the Lagrangian

1 o o
> oy 3 > aiagyiy; (& - 75) (22)
i i

subject to
a; >0 1=1,---,4

> ey =0.
i

The {«a;} are called Lagrange multipliers, and @ = ); o;y;Z;. Those
Z;’s corresponding to nonzero Lagrange multipliers are called support
vectors. b = —3[(W- 74 )+ (- Z_)], where we denote by Z any positive
support vector and by Z_ any negative support vector.

The above SVM solving linearly separable data in the feature space
is called the hard margin SVM. To construct the optimum margin
hyperplane when the data are linearly nonseparable, nonnegative slack
variables £; > 0 are introduced and the primal problem is to minimize

14
L . o
Sl +C (2@-) (23)
i=1
subject to
yi(w-.’fi-l-b)Zl—fi i=1,---,4, (24)

where C > 0 and o are given values. The above SVM (23) and (24)
dealing with linearly nonseparable data in the feature space is called
the soft-margin SVM.

To simplify computations, let ¢ = 1, then the corresponding dual
problem is to maximize the Lagrangian

1 .
D - 2 > oy (F - ) (25)
i 1,J

under slightly different constraints:
0<a<C i=1,---,1 (26)
Z a;y; = 0. (27)

i

In practice, o can also be set to 2, as is implemented by a slightly dif-

ferent kernel function (see subsection 5.4). Keerthi et al. [22] noted that
the linear slack penalty in the objective function resulted in a smaller
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number of support vectors compared to the quadratic slack penalty
in their experiments. The theoretical explanation of this phenomenon
remains open.

When the number of training examples is large, QP is very dif-
ficult to solve, and standard QP routines have substantial memory
requirements. One direction of the development of simple solutions to
SVMs is centered on splitting the problem into a series of smaller size
subtasks [35, 43, 20, 19]. Another direction is focused on an iterative
algorithm for training SVMs, which will be discussed below.

SMO (Sequential Minimal Optimization) proposed by Platt [37]
works on the Wolfe dual problem and chooses to solve the smallest
possible optimization problem at every step. For the standard SVM
QP problem, the smallest possible optimization problem involves two
Lagrange multipliers, hence at every step, SMO applies some heuris-
tics to choose two Lagrange multipliers to jointly optimize, and there
is an analytical solution for the minimal optimization problem as in
ROMMA. SMO is especially well-suited for sparse data sets, or training
linear SVMs, or soft-margin SVMs with many support vectors at the
upper bound.

KA (the Kernel Adatron) proposed by Friess, Cristianini and Camp-
bell [13] also works on the Wolfe dual problem and maximizes the
Lagrangian (22) using stochastic gradient ascent based on the deriva-
tive of the Lagrangian with respect to individual o}s. KA introduces
an additional parameter of learning rate and is proved to converge.

The above two algorithms implement the corresponding soft-margin
SVMs by imposing an extra constraint on the Lagrange multipliers as
in [8], that is, they solve the dual problem (25), (26) and (27). There is
no theoretical analysis of the convergence rate for these two algorithms
yet. The training times of SMO were shown to be subquadratic in the
number of training examples in the experiments conducted in [6].

Recently a method of training SVMs based on computing the nearest
point between two convex polytopes was independently proposed by
Kowalczyk [25] and Keerthi et al. [22]. Kowalczyk designed a perceptron-
like learning rule to compute the nearest point and proved a conver-
gence rate of wm%, where R, u and § represent the same
as in Theorem 5. Keerthi et al. combined and modified two known
algorithms [15, 32] of solving nearest point problem and only proved
its convergence. Both of their algorithms implement the corresponding
soft-margin SVMs by introducing a quadratic slack penalty in the ob-
jective function (i.e. ¢ = 2), which can be easily converted back to hard
margin SVMs with the help of kernel functions. Noise control adopted
in our experiments took this idea.

paper.tex; 23/03/2001; 10:16; p.24



25

6.1. COMPARISONS BETWEEN SMO AND AGGRESSIVE ROMMA

Platt ran his SMO also on MNIST dataset [37]. One classifier (for digit
8) was trained with d set to 5 in the same polynomial kernel function.
The inputs are non-binary and are stored as sparse vectors so that
his sparse dot product codes can take effect. A KKT tolerance of 0.02
was used to match the AT&T accuracy results in his experiment, that
is, the examples on the positive margins have outputs between 0.98
and 1.02. (He argued that recognition systems typically did not need
to have the KKT conditions fulfilled to high accuracy and that SVM
algorithms would not converge as quickly if required to produce very
high accuracy output.) In one of his experiments on this dataset, he set
C to 100, and none of the 3450 support vectors is at the upper bound,
hence we believe that the solution he got in that experimental setting
is for hard margin SVMs. In another experiment, he set C' to 10, and
some of the support vectors are at the upper bound, therefore we take
that the solution got in the latter setting is for soft margin SVMs.

SMO in his experiment was written in C++, using Microsoft’s Visual
C++ 5.0 compiler. The algorithm was run on an unloaded 266 MHz
Pentium II processor with 128M memory and Windows NT 4 system.
The CPU time covers the execution of the entire algorithm but excludes
file I/0.

To compare with SMO on MNIST dataset, unlike in section 5 where
update condition is y(w - ) < 1 and aggressive ROMMA was run until
four epochs, we set § = 0.02 (the desired accuracy level in SMO for
this dataset), make an update whenever y(w - %) < 1— 4 (note that the
update condition here is a little different), and ran aggressive ROMMA
until y(w - £) > 1 — § = 0.98 for all training instances (Z,y).

Remember that in aggressive ROMMA, if an update is done on trial
t and if y;(w; - &) < 1—e¢, the progress made is at least €2/R2. To speed
up convergence, we set the initial value of § to 1, dynamically decrease §
until desired accuracy level and make an update whenever y(w-Z) < 1—
d. In this experiment, J takes on values from [1,0.7,0.4,0.1,0.06,0.02]
([1,0.7,0.4,0.1,0.06,0.02] is an arbitrary decreasing list of numbers),
an update is needed whenever y(w-Z) < 1 — 4, and § does not take the
next value until for all (#,y) and the current value of §, y(@-Z) > 1—4.
That § takes on values from a sequence of numbers of decreasing order
and change update condition to y(w-Z) < 1—J in aggressive ROMMA
is called control of progress. Note that control of progress affects mainly
speed when the desired accuracy level is small. When there is no control
of progress, § is the desired accuracy level, and the update condition is
y(w-¥) <1-34.
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Our ROMMA series were written in C++, using g++ compiler.
The algorithm was run on one (since only the classifier for digit 8 is
trained) unloaded 400MHz Pentium II processor with Linux2.2 and
256M memory. Note that the maximum memory requirement of our
algorithm for MNIST dataset is about 63M, so 256M memory is a
luxury. The CPU time reported in table IV covers the execution of the
entire algorithm, excluding file I/O.

The definition of support vectors in (aggressive) ROMMA is slightly
different from the standard one, where a training example is viewed as
a support vector if its corresponding Lagrange multiplier in the dual
problem is different from zero. Since ROMMA works on the primal
problem, a training instance is a support vector if it ever causes an
update. Thus the number of support vectors in (aggressive) ROMMA
is the size of the union of all instances on which an update was made
during training.

If the desired accuracy level is different from 0, the solution which
aggressive ROMMA obtained is not unique, since for some (Z,y), y( -
Z) may be at least 1 although for all (Z,y), y(&@ - Z) > 1 — 4. Which of
the instances have larger outputs depends on the order of the sample
sequence. However, our experiment showed that the total number of
support vectors was quite stable when the desired accuracy level is
small.

Each component of the input was divided by 1100 in aggressive
ROMMA for this dataset, which was implemented efficiently in the dot
product. One reason to scale features is for bias (see Subsection 5.2
for details). SMO did not do any preprocessing on this dataset. The
CPU time and number of support vectors for aggressive ROMMA in
Table IV and Table V average over 10 random permutations of sample
sequence, accompanied by 95% confidence interval.

Since SMO and aggressive ROMMA implement different kinds of
soft-margin SVMs, we first compare their training times for hard mar-
gin SVMs. Among the 10 random runs of aggressive ROMMA, CPU
time ranges from 6504 seconds to 7074 seconds, and the number of
support vectors ranges from 2600 to 2647. If there is no control of
progress, the average training time is 10300 seconds and the average
number of support vectors is 3645. Considering that the processor we
used is only about as 1.5 times fast as the processor Platt used, it seems
that aggressive ROMMA with/without control of progress converged
faster than SMO for training hard margin SVMs on this dataset (but
their solutions may be different, see the discussion in subsection 5.2).

Next we compare the training time of SMO with that of aggressive
ROMMA for soft margin SVMs. Remember that SMO implements
the soft margin SVMs by introducing linear slack penalty, while (ag-
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Table IV. Comparisons of training times between SMO for hard
margin SVMs and aggressive ROMMA (with control of progress)
for hard margin fixed threshold SVMs on MNIST dataset (for digit
8 and d=5)

| | CPU seconds | # of SVs |

| SMO (run on 266MHz PC) | 20471 | 3450 |

| age-ROMMA (run on 400MHz PC) | 6708+139 | 2624+13 |

gressive) ROMMA by introducing quadratic slack penalty. In Platt’s
experiment on this dataset for soft margin SVMs, he set C to 10,
and 149 out of 3412 support vectors are at the upper bound. In our
experiment using aggressive ROMMA with control of progress, we set
A to 30 as in section 5.5. The CPU times and number of support vectors
are shown in Table V, where all results for aggressive ROMMA average
over 10 random permutations of sample sequence, accompanied by 95%
confidence interval.

Table V. Comparisons of training times between SMO for soft mar-
gin SVMs and aggressive ROMMA (with control of progress) for
soft margin fixed threshold SVMs on MNIST dataset (for digit 8
and d=5)

| | CPU seconds | # of SVs |

| SMO (run on 266MHz PC) | 25096 | 3412 |

| agg-ROMMA (run on 400MHz PC) | 6899+121 | 2763+19 |

Among the 10 random runs of aggressive ROMMA, CPU time ranges
from 6580 seconds to 7125 seconds, and the number of support vectors
ranges from 2714 to 2812. Again aggressive ROMMA with control of
progress might converge faster than SMO for training soft margin SVMs
on this dataset, but to different solutions. We observed that quadratic
slack penalty caused the number of support vectors and training times
to increase a little; while the linear slack penalty caused the number of
support vectors and training times to decrease, which coincides with
what Keerthi et al. noted [22].
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Note that our algorithm, just like SMO, can also make use of the
sparseness of the input, and that the update rule in our algorithm
has good property such that many intermediate results can be reused
(see subsection 3.3), we expect that aggressive ROMMA converges
faster than SMO in general settings if bias can be implemented by
the kernel function or other methods (but to different solutions). More
experiments are needed to verify this.

7. Conclusion

We designed and analyzed a new incremental algorithm called ROMMA
for training linear threshold functions, which can be applied with kernel
methods. ROMMA can be viewed as an approximation to the maximum
margin classifiers, and its computational complexity and simplicity
is similar to that of the perceptron algorithm. Experiments on the
MNIST handwritten digits showed that ROMMA performed better
than the perceptron algorithm, and aggressive ROMMA had slightly
better performance than the voted perceptron algorithm.

Aggressive ROMMA converges to the fixed threshold maximum mar-
gin classifier, is simple to implement, does not require a lot of memory,
and comes with theoretical bounds on its convergence rate. The fu-
ture theoretical work might be exploring whether the convergence rate
of aggressive ROMMA can be improved, or rather, if it is the best
rate achievable by perceptron-like algorithms. It seems that aggressive
ROMMA was faster than SMO according to the comparisons in sub-
section 6.1, however we are not sure of this, since we only got access
to the results of SMO run on MNIST with non-fixed threshold, while
our aggressive ROMMA implemented the variable threshold with the
help of kernel functions (see subsection 5.2 for the difference between
them).

We also briefly discussed the role of scaling of features in our experi-
ments. However, it is an open problem to obtain efficiently the optimal
scaling for polynomial kernel functions. Bias in (aggressive) ROMMA
was implemented by kernel functions at the time being; the future work
might be to work out a way to compute bias explicitly for them or to
identify the conditions on which the solution that aggressive ROMMA
with implicit bias converges to is close to SVM solution (with variable
threshold).
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