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Abstract

We study the application of a linear programming algorithm due to Vaidya to the problem of
learning halfspaces in Baum’s nonmalicious distribution model. We prove that, in n dimensions,
this algorithm learns up to € accuracy with probability 1 — € in
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time. For many combinations of the parameters, this compares favorably with the best known
bound for the perceptron algorithm, which is O(n?/é%).

Keywords: Computational learning theory, analysis of algorithms.

*Supported by Air Force Office of Scientific Research grant F49620-92-J—-0515 and a Lise Meitner Fellowship from
the Fonds zur Forderung der wissenschaftlichen Forschung (Austria).



1 Introduction

In part due to their interpretation as artificial neurons [13, 15], a great deal has been written about
the analysis of halfspaces in different computational models of learning. In this paper, we analyze
the use of one of Vaidya’s linear programming algorithms [18] to learn halfspaces in a variant of
the PAC model [19] due to Baum [2], called the non-malicious distribution (NMD) model.

In the NMD model, a halfspace H C IR" is chosen randomly. There is a straightforward reduction
from the problem of learning arbitrary halfspaces to learning homogeneous halfspaces, i.e., those
that go through the origin (see, e.g. [5]). We will therefore restrict our attention to homogeneous
halfspaces. The halfspace H to be learned is then chosen by picking its normal vector uniformly
from the unit sphere. (If one works through the reduction from general halfspaces, this gives rise
to the distribution on general halfspaces obtained by choosing (w1, ..., wy,b) uniformly from the
unit ball in IR"*!, and setting the halfspace to be learned to be {& : w - & > b}.) It is further
assumed that there is a probability distribution D over IR™ that is unknown to the learner, but
that the learner may (in unit time) sample points Z1, ..., Z,, independently at random according to
D. Furthermore, the learner can find out whether each of these points is in the hidden halfspace
H. The goal of the learner is to output an approximation H of H. The accuracy of H is measured
by the probability that another point z drawn from D will be in the symmetric difference of H
and H, i.e., that His “wrong” about xz. The learner is given an input ¢ > 0, and is required to
ensure that with probability at least 1 — €, with respect to the random choice of H and Z1, ..., Zp,
the accuracy of H is better than e. This model takes a Bayesian viewpoint, as has been done in
[9, 14] and elsewhere.

In Baum’s original formulation, there were two separate parameters measuring the accuracy and
the probability that the given accuracy was achieved. However, combining the two simplifies our
bounds greatly, and it seems that in practice the two should at least be close. Both being extremely
sure of having a mediocre hypothesis, and being fairly sure of having an outstanding hypothesis
seem unusual goals.

Baum [2] showed that the perceptron algorithm [15] accomplishes the above in O(n?/e%) time. In
this paper, we show that an algorithm based on linear programming [18],2 requires
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time.

For many values of n and ¢, this represents a substantial improvement. For example, when n and 1/e
are within a constant factor, the linear programming bound of this paper grows like O(n3-38logn),
which compares favorably with the O(n”) bound in this case for the perceptron algorithm.

We make use of O(n??®) time matrix multiplication [4] as a subroutine. Since the constants in the
analysis of this matrix multiplication algorithm, as well as those for other o(n3) algorithms, are
quite large, some claim that in practice the time required for multiplying n x n matrices grows like

'The proof of results for the PAC model [8] that show that the dependence of the requirements on the inverse of
the “confidence” can always be brought down to being logarithmic cannot be easily modified for this model, since,
loosely speaking, here the probability of failure depends on the random choice of the target as well as the random
sample.

2The idea of using linear programming for recovering a “separating” halfspace is quite old (see [5]), and its use to
generate polynomial time learning algorithms originates with Blumer, Ehrenfeucht, Haussler and Warmuth [3].
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O(n3). However, replacing the n%3% in our learning bounds with n3 only changes the n3-38 in our

bound to an n*. An O(n*logn) bound would still be a significant improvement over O(n").

The most natural application of linear programming techniques to the problem of learning halfs-
paces is to draw a sample Z1, ..., Zm, and then find a halfspace H for which each of 71, ..., T, is in
H if and only if it is in the halfspace H to be learned, since this requirement amounts to m linear
constraints on the normal vector of H [3]. However, in order to simply plug in to the time bounds
for solving linear inequalities (with m inequalities and n unknowns), one must make assumptions
on the precision of the Z;’s. (It is open whether there is a polynomial time algorithm for the
unit-cost model for linear programming. Such an algorithm would imply unit-cost polynomial time
algorithms for learning in the NMD model, as well as Valiant’s PAC model [19] (see [3]).)

In the NMD model, we have found that a different approach doesn’t require any assumptions on
the precision of the Z;’s, and yields significantly improved time bounds.?

The iterations in Vaidya’s linear programming algorithm can be viewed as what are called queries
in another model of learning (due to Angluin [1]) often called the equivalence query model [12].
Implicit in Vaidya’s analysis of his algorithm are bounds the number of iterations made by this
algorithm in terms of the volume of the solution set of the system of linear inequalities [18]. These
bounds can therefore also be viewed as equivalence query bounds. Using conversions from this
model to the PAC model [1, 10, 11], one can see that, for arbitrary e > 0, if the volume of the
set of normal vectors defining halfspaces that “agree” with the target halfspace H on %y, ..., %, is
not unreasonably small, then, with high probability, a randomized variant of Vaidya’s algorithm
quickly finds a setting of weights whose associated halfspace H satisfies that the fraction of elements
of T1,...,Zp, which lie in the symmetric difference of H and H is at most €/2. Applying results
of Blumer, Ehrenfeucht, Haussler and Warmuth, for m = O((n/¢) log(1/€)), this is good enough.
Finally, we show that, with high probability, the volume of the set of normal vectors defining
halfspaces which “agree” with the halfspace to be learned on Z1, ..., Ty, is not too small.

2 Preliminaries

Let IN denote the positive integers and IR the reals. For sets S; and So, let S1ASy denote the
symmetric difference of S; and S;. We use the unit cost RAM model of computation (see, e.g.
[17]), where it is assumed that the standard operations on real numbers can be done in unit time.

Choose X = U,X,,, and for all n, let C,, be a class of subsets of X,,, and C = U,,C,,. Such a C
is called a concept class. An example of C € C, is a pair (z, xc(z)) € X, x {0,1}, where x¢ is
C’s characteristic function. A subset C' of X,, is consistent with (z,xc(z)) if xo(z) = xor(2)-
A sample is a finite sequence of examples. We say C' C X, is consistent with a sample if it is
consistent with each example in the sample.

A batch learning algorithm A takes as inputs an n € IN, a desired accuracy € > 0, and a sequence of
elements of* X,, x {0,1}. A then outputs an algorithm for computing a function & : X,, — {0,1}.
Usually, the algorithm can be understood from the description of h, and we will refer to the two
interchangeably in the rest of this paper.

We begin with the PAC model [19]. For a function ¢ : IR x IN — IN U {oo}, we say A PAC-learns C
in time ¢ if and only if there is a function ¢ : IR x IN — IN U{o0} such that for all input parameters

3In fact, for many combinations of the parameters, this approach yields improved time bounds for Valiant’s PAC
model, but the improvement is less dramatic.
4In this paper, an encoding for the elements of X will always be obvious.



n and €, if m =¥ (1/e,n):

e m< ¢(1/6’n)a

e whenever A receives n, €, and examples (z1,y1),.--; (Tm,Ym), A halts within time ¢(1/e,n)
and outputs a hypothesis h, whose running time (on inputs in X,,) is also at most ¢(1/€,n),

e for all probability distributions D on X,,, and for all C € C,, if A is given m examples of
C generated independently according to D, the probability that the output h of A satisfies
Pryecp(h(u) # xo(u)) < € (“has accuracy better than €”) is at least 1 — e.

Now we turn to the NMD model [2]. Suppose, for each n € IN, P, is a probability distribution on
Cn, and P = {P, : n > 1}. In this case, we say A PAC-learns C with respect to P in the NMD
model in time ¢ if and only if there is a function ¢ : IR x IN — IN such that for all input parameters
n and € if m = ¢(1/e,n):

e m < ¢(1/€,n),

e for any z1, ..., z,, the expectation, over a randomly chosen C' according to P, of the running
time of A on inputs n, €, and (z1,xc (1)) - (Tm, Xc(Tm)) is at most ¢(1/e,n), and the
running time of the resulting hypotheses h (on inputs in X,,) is at most ¢(1/¢,n),

e for all probability distributions D on X, if (z1,...,2Z,) and C are chosen independently at
random from D™ and P,, and (z1, xc(%1)), -y (Tm, Xc(Tm)) is given to A, the probability
that the output h of A satisfies Prycp(h(u) # xc(u)) < e is at least 1 —e.

We will also discuss concept classes not indexed by n. It should be obvious how to adjust the above
definitions for this case.

Finally, we define the equivalence-query model [1]. In the equivalence-query model, when the
algorithm is learning a class C, it sequentially produces queries which are (representations of)
elements of C. When the algorithm correctly guesses the function C' to be learned, the learning
process is over. Otherwise, if the algorithm has queried C, it receives z € CAC. A learning
algorithm for this model is called a query algorithm.

For each n, let HALF,, be the set of all homogeneous halfspaces in IR", i.e.
{{ZeR":w-£>0}: W e R"}.
Let HALF = U,HALF,,.

3 The analysis

We will make use of the following lemma, which is implicit in the analysis of Littlestone.

Lemma 1 ([11]) Choose X,C C 2X. Suppose for any z € X,C € C, the question of whether
z € C can be computed in [ time. If there is a query algorithm B for C for which the time taken
by B between queries is at most o, and the algorithm makes at most v queries, then there is a PAC
learning algorithm for C which outputs hypotheses from C whose time requirement is

)




and which uses

ot (r+m)

The following notation will be useful. Fix some n. For each # € IR"™, let

random examples.

Hz={Z€ R" :%W-Z > 0}.
For some finite set S C IR" and some W € IR", let Hyz g = Hz N S. Also, define
Esy={i € R": Hyzs = Hgg,||ull2 < 1}.

Informally, Eg ; represents the set of all halfspaces that are indistinguishable from Hg on the basis
of S. Finally, for a finite set S C IR", and v > 0, let

HALFS,v = {Hu_)',S € B",volume(ES’w) > ’U}_

Now we are ready for another lemma, which is implicit in the analysis of Vaidya [18], if his linear
programming algorithm is viewed as a query algorithm in the manner of Maass and Turdn [12].

Lemma 2 ([18, 12]) For any finite S C IR"™, there is a query algorithm MTYV, such that, for all
v > 0, MTV learns HALFs , while using at most O(n?38) time between queries, and makes at most

1
(0] (n logn + log —)
v
queries.
We also make use of a special case of a result of Blumer, Ehrenfeucht, Haussler, and Warmuth.

Lemma 3 ([3]) There is a constant ¢ such that, for all € < 1/4, then if a (randomized) batch
learning algorithm for learning HALF,, draws

cn 1
m > — log —
€ €
random examples, and with probability at least 1 — €/2 outputs a halfspace H such that the fraction

of examples in the symmetric difference ofﬁ and the halfspace H to be learned is at most €/2, then
H has accuracy better than € with probability at least 1 — e.

The following bound will also be useful.
Lemma 4 (see [16, 6, 3]) Choose m,n € IN, and S = {Z1,...,Zn} € IR". Then

n
{T CS:3H € HALF,,HNS =T} < (ﬂ) .

n

Finally, we record a trivial lemma.



en

~ log %, where c is as in Lemma 3;

let m be the least power of 2 not less than
draw Z1, ..., % € IR"™ independently at random from D;

S = {1, ey B}

— 2 \".
v = i (%) :
convert algorithm MTV (from Lemma 2) for learning HALF g, into a PAC algorithm
A’ using the transformation of Lemma 1;
simulate A’ using the uniform distribution on (Z1, ..., %) to, with probability at

least 1 — ¢/4, find a halfspace H such that Li{j:3€ HAHY| < ¢/2;

output H ;
Figure 1: Algorithm A from Theorem 6

Lemma 5 Choose a set X, and a probability distribution D over X. Suppose Ei,...,E, form a
partition for X, and for each x € X, i, s the index of the element of the partition containing x.
Then for all ¢ > 0,

Prycp(Pr(E;,) <c) <cr.

We put these together to prove the main result of this paper.

Theorem 6 If, for each integer n > 2, P, is the distribution over HALF,, obtained by choosing
the normal vector W uniformly from the unit ball, then there is an algorithm A that PAC learns
HALF with respect to P = {Pp} in the NMD model in time

2
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Proof: Choose n. Consider the algorithm A described in Figure 1.

Fix S for the moment. Then since the volume of the unit ball is more than 2" /n!,

!
Pr;(volume(Eg 5) < v) < Prg (Prﬁ(ﬁ € Esp) < %) :

Combining Lemma 4 and Lemma 5 with the above, we get

n! em\" em\"
PrU_f(VOIUIne(ES,U_f) < U) < 2_nU (7) < (7) v.

By the choice of v, Prg(volume(Esg ) < v) < €/4. By Fubini’s Theorem (see [7, volume 2, page
120]), since this holds for arbitrary S, it holds for randomly chosen S as well. Thus, the probability
with respect to the random choice of Z1, ..., Z,, and of the target H that H N {Z1,..., %y} is not in
HALF (3, . #,},0 IS at most €¢/4. By construction, this implies that the probability that H does not
satisfy L|{j : T, € HAH}| < €/2 is at most €/2. Applying Lemma 3 completes the proof of the
correctness of the algorithm.

To analyze the time used by the algorithm, it is tempting to simply plug into the time bounds of
Lemma 1. However, in that lemma, it is assumed that the algorithm may obtain random examples



in unit time. However, when we simulate A’, we must generate random examples for it. Neverless,
one may trivially sample from the uniform distribution on {1, ..., m} in O(logm) time, and therefore
the total time spent sampling is at most

0] ((logm) (nlogn—i—log1 —I—logl))
€ v €

by the sample size bound of Lemma 1, together with Lemma 2. Substituting and simplifying yields
that this time is )
nlog” 2
O <$> . 1)
€

To bound the time spent otherwise, we plug into Lemma 1 together with Lemma 2, getting

1
1 1 nlog n+log +
(0] ((n logn + log ;) (n2-38 + nn% .

Expanding the definitions of v and m, simplifying, and observing that the resulting quantity dom-
inates (1) completes the proof. O
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