
Minimum Majority Classification and Boosting

Philip M. Long
Genome Institute of Singapore

1 Science Park Road
The Capricorn, #05-01

Singapore 117528, Republic of Singapore
gislongp@nus.edu.sg

Abstract

Motivated by a theoretical analysis of the generalization of
boosting, we examine learning algorithms that work by try-
ing to fit data using a simple majority vote over a small num-
ber of a collection of hypotheses. We provide experimental
evidence that an algorithm based on this principle outputs hy-
potheses that often generalize nearly as well as those output
by boosting, and sometimes better. We also provide experi-
mental evidence for an additional reason that boosting algo-
rithms generalize well, that they take advantage of cases in
which there are many simple hypotheses with independent
errors.

Introduction
Boosting algorithms (Schapire 1990; Freund 1995; Freund
& Schapire 1997) work by repeatedly applying a subal-
gorithm to a dataset. Before each application, the exam-
ples are reweighted. The hypotheses returned are then
combined by voting: for example, in the two-class case,
each hypothesis is assigned a weight, and an item is clas-
sified as

�
if the total weight of the hypotheses classi-

fying it as
�

is more than that of hypotheses classify-
ing it as � . Boosting has been successfully applied in a
variety of domains (Drucker, Schapire, & Simard 1993;
Freund & Schapire 1996a; Drucker & Cortes 1996; Abney,
Schapire, & Singer 1999; Cohen, Schapire, & Singer 1999;
Freund et al. 1998; Bauer & Kohavi 1999; Iyer et al. 2000;
Schapire, Singer, & Singhal 1998).

The generalization observed by boosting algorithms ap-
peared to run counter to the Occam’s Razor principle which
has been the bedrock of much of both theoretical and ap-
plied machine learning research. Loosely, Occam’s Razor
says that simpler hypotheses are to be preferred, because
simple hypotheses are less apt to perform well on the train-
ing data by chance. But the hypotheses output by boost-
ing algorithms are more complex than those output by the
subalgorithm, and generalization is seen to improve as the
number of rounds of boosting increases, even after all of the
training data is classified correctly (Drucker & Cortes 1996;
Quinlan 1996; Breiman 1998).

An influential theoretical analysis (Schapire et al. 1998)
bounded the generalization error of the hypothesis output

Copyright c
�

2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

by the boosting algorithm in terms of the margin.1 This is
the minimum, over all examples, of how much greater is
the total weight of the hypotheses classifying the example
correctly than the total weight of the incorrect hypotheses.
(Grove and Schuurmans (1998) evaluated an algorithm that
used linear programming to train weights to maximize the
margin, and found that the resulting performance was often
somewhat worse than obtained by Adaboost.)

The proof of the generalization bound in terms of the mar-
gin can be crudely paraphrased as follows: hypotheses that
classify data correctly with a large margin generalize well
because they can be accurately approximated by simple ma-
jority votes over few of the constituent hypotheses, which
is a “simple” class of hypotheses. Continuing boosting for
more rounds improves generalization even after the voting
hypothesis has zero training error because, the resulting ex-
planation goes, while the hypotheses generated are them-
selves more complex, they can be accurately approximated
by simple hypotheses to an improved degree.

This observation motivates the following question. What
if a learning algorithm worked by directly trying to find
small collections of simple hypotheses for which a major-
ity vote correctly classified much of the data? This is the
subject of this paper. Our goals are both to better understand
the reason that boosting algorithms generalize well, and to
provide an approximation to boosting that outputs simpler
hypotheses. (This problem was posed by Quinlan (1999) .)

The design of an algorithm applying this minimum major-
ity principle gives rise to a nontrivial optimization problem.
The author (Long 2001) previously proposed a polynomial-
time algorithm for trying to minimize the size of a col-
lection of hypotheses for which a simple vote yields cor-
rect classifications on all members of a dataset. The algo-
rithm has a theoretical approximation bound, but it needed
to be modified substantially to work well in practice. It
makes use of a nonstandard variant (Pach & Agarwal 1995;
Williamson 1999) of randomized rounding (Raghavan &
Thompson 1987), a technique for solving integer program-
ming problems in which, roughly

� the requirement that the variables are integers is removed,

1In fact, their analysis was more general, but the spirit of the
analysis is captured in this simple case, and the below discussion
also applies to their more general analysis.

� the resulting solution is used to generate a probability dis-
tribution over integer solutions, and

� an integer solution is sampled from this distribution.

Using this algorithm, we carried out a suite of ex-
periments comparing its generalization with that obtained
through boosting. As was done in some of the experiments
in (Freund & Schapire 1996a), both algorithms used deci-
sion stumps (Iba & Langley 1992) as the hypotheses of the
subalgorithm. (Decision stumps test the value of a single
attribute, comparing it with a threshold if it is numerical,
and base their classification on the result. Examples include
“classify as

�
exactly when ��������� � ” and “classify as � ex-

actly when �
	�� RED”.) We compared them on a variety of
datasets previously used for evaluating boosting (Freund &
Schapire 1996a). In almost all cases, the minimum major-
ity algorithm accurately approximated the generalization of
boosting; sometimes it performed slightly better. However,
in a few cases, it performed significantly worse.

Why? One possible explanation is as follows. The
reweighting of the examples done by boosting tends to force
the subalgorithm to return hypotheses whose errors are ap-
proximately independent (Ali & Pazzani 1996; Niyogi, Pier-
rot, & Siohan 2001), that is for example����

first hypothesis right
AND second hypothesis wrong

AND ...
AND � th hypothesis right �� ����

first hypothesis right �� ���� second hypothesis wrong �� �����
� ���� � th hypothesis right � �

If it is successful in finding a large number of different hy-
potheses that are fairly accurate and whose errors are mu-
tually independent, then it can hurt generalization to only
make use of a small number of them. This is because if there
are many (approximately) independent hypotheses partici-
pating in a vote, the variance of the fraction of them that are
correct on a random instance will be smaller, and thus the
fraction will be less likely to dip below

��� � .
This phenomenon is illustrated dramatically with a very

simple artificial dataset. There are 100 attributes that are
conditionally independent given the class label, agreeing
with it with probability 2/3, and 100 examples. On this data,
boosting decision stumps results in hypotheses using nearly
all the attributes, which achieve 97.8% accuracy on inde-
pendent test data, whereas the minimum majority algorithm
chooses small subsets (averaging 6.6) of the attributes, and
only gets 77.2% correct.

Another artificial dataset provides an example of where
the minimum majority algorithm has the advantage. In this
dataset, there are 111 boolean attributes. The first 100 are
independent flips of a fair coin, and a majority vote over
the first 11 of these determines the class label. The final 11
attributes are conditionally independent given the resulting
class label, agreeing with it with probability � ����� ����� � � �

� � � (which a simple calculation shows is greater than the
probability that a determiner agrees with the class label).
When there are ! " $# examples, the conditionally indepen-
dent attributes that correlate with the class label feature
prominently in the boosted hypothesis, whereas in ten runs
with data sets of this type, the minimum majority algorithm
always consisted of a majority vote over precisely the

� �

attributes that determine the class label. (This is encourag-
ing evidence of the effectiveness of the optimization routine.
Note that any greedy algorithm would include the condition-
ally independent attributes that correlate better with the class
label.) The generalization of minimum majority is of course
100%, where boosting yields 99.1%.

The above two artificial datasets demonstrate a clear sep-
aration between boosting and following the minimum ma-
jority principle, and suggest the following extended expla-
nation of the generalization ability of boosting. It appears
that in addition to finding hypotheses that can be approx-
imated with sparse, simple majority votes, boosting also
makes maximal use of large collections of hypotheses whose
errors are independent when such opportunities arise.

The experiments on the UC Irvine data (see Table 1) sug-
gest that the minimum majority principle leads to a learning
algorithm that for many applications generalizes nearly as
well as boosting, but outputs simpler hypotheses based on
fewer attributes, and is based on basic, easily understood
principles.

Algorithm
In this paper, we will concentrate on the two-class case. The
two-class case is sufficient to bring up the points we wish to
explore, and, besides, much of the work on multiclass pre-
diction using boosting proceeds by reducing to the two-class
case (Freund & Schapire 1995; Schapire & Singer 2000).

The algorithm is perhaps best described in stages. First,
we will describe the basic algorithm, then describe a series
of modifications.

Generating a list of decision stumps
For each numerical variable, we create a list of thresholds by
sorting the values that the variable takes on the dataset, and
then putting a threshold halfway between each consecutive
pair of values in the resulting list. For example, if a variable
took the values � , % , & , and , then the thresholds created
would be

� ��� , % ��� and � . For each threshold, two decision
stumps are created, one that predicts

�
if the variable is at

least the threshold, and one that predicts
�

if the variable
is at most the threshold. Boolean variables are treated as
numerical variables taking the values � and

�
.

For each nominal variable ' , for each value (that it takes,
two decision stumps are created: one which predicts

�
ex-

actly when variable ' takes the value (, and one which pre-
diction

�
exactly when variable ' doesn’t take the value (.

Finally, decision stumps that always predict
�

and always
predict � are added.

The basic algorithm
The basic algorithm addresses the problem of finding the
smallest multiset of decision stumps for which a majority

vote correctly classifies all the examples. This can be for-
mulated as an integer program. Suppose there are � decision
stumps and � examples, and let

�
be the � � � matrix in

which
����� �

is
� �

if the ' th decision stump is correct on the � th example,
�
	 �

if the ' th decision stump is incorrect on the � th exam-
ple,

� � if the variable queried has a missing value.

Then the problem can be phrased as that of setting
nonnegative-integer-valued variables ���� ������ ��� to minimize� ���� � � � subject to the constraints that

� � � � � � ������ � ���
(where � � � � � ������ � � ���). The ' th variable is the num-
ber of times that ' th decision stump gets to vote, and each
constraint requires that the number of correct votes on a cer-
tain example is at least

�
more than the number of incorrect

votes.
The basic algorithm

� solves the linear program obtained by removing the re-
quirement that the variables are integers and gets the so-
lution

��� �� ������ � � � ,
� sets

��� �� ������ � � � � ��� �� ������ � � � � ��� ��� ������� � � �
to be the probability distribution over decision stumps in
which the probability of decision stump ' is proportional
to the value of

� �
,

� repeatedly randomly picks a variable using the distribu-
tion

��� �� ������ � � � keeping track for each variable ' of the
number of times � � that ' has been picked, until

� � � � � � � ������ � ��� , at which time it quits and outputs � .

This algorithm has been shown to approximate the opti-
mal solution in polynomial time (Long 2001). Two facts
help one imagine why. First, if a solution is feasible, then
the solution obtained by scaling all components by a con-
stant factor is also feasible; e.g., if a certain solution calls
for a certain collection of decision stumps to each vote once,
then if instead they all always vote twice, all the votes
come out the same way. Second, if � � � ���� � � � and� � ��� �� ������ � � � , then, after the algorithm has randomly
chosen � variables, the expectation of the current solution� is

� � � � � � .
The system used in our experiments solves the linear pro-

gram using PCx (Czyzyk et al. 1999), which implements an
interior-point algorithm.2

Resolving
Note that after the algorithm has committed to its first choice
of a decision stump, it is left with a subproblem of a similar

2PCx generally worked impressively well on the linear pro-
grams generated by this application. However, with the default
parameter settings, PCx infrequently either incorrectly reported in-
feasiblity, or crashed – when either happened, the system used in
our experiments would simply start another attempt to improve
the best solution found. Increasing opttol, prifeastol, and
dualfeastol to "! # $ # "% and setting refinement to no ap-
peared to help.

form. It wants to add as few decision stumps as possible in
subsequent iterations, subject to updated constraints. For ex-
amples on which the first decision stump is correct, only half
of the remaining choices need to be correct. For examples
on which the first decision stump is incorrect, the number of
subsequent decision stumps that are correct must be at least
two greater than the number that are incorrect, in order to
overcome the error made by the first decision stump. These
constraints lead to different priorities than were in effect at
the beginning, so presumably solving the linear program-
ming relaxation of this new integer program should lead to a
more appropriate probability distribution to use for choosing
the second decision stump. This continues for future itera-
tions. Our algorithm does this. This had a major effect on
its performance in practice: prior to this modification, it was
effectively useless.

Committing to the integer parts
The above process can be viewed as making successive com-
mitments that the values of various variables are at least cer-
tain integer values, and incrementing one of these values at
each iteration. This can be seen by expressing the integer
program formulated at each iteration in terms of the original
variables. To see how, let us focus again on the second it-
eration. Suppose that the decision stump chosen in the first
iteration is number ' � . Suppose we formulate the integer
program faced at the beginning of the second iteration using
the same variables as the original integer program, where
each variable is the number of times one decision stump will
be chosen overall. Then the new integer program can be ob-
tained from the old simply by adding the constraint � �'& � �

.
In general, if after a certain number of iterations the decision
stumps numbered

�
through � have been chosen (� through(� times respectively, then the integer program to solve in

the next iteration is

)+*�,-*�)+*�.$/
�0
��� � �

� s.t.

�0
��� �

���1� � � � � for all examples �
� � � (� for all decision stumps ' �

Sometimes, the solution
��� �� ������ � � � to the linear pro-

gramming relaxation of an integer program of the above
form has many variables for which

� � � (� � �
. Rather

than wait for those values to be committed to in future iter-
ations, we went ahead and committed to the integer parts of
all variables before making the next random selection. For
example, suppose there were three decision stumps, and the
linear program returned a solution of

� ��� � % ���2 � � &$� . Then
the algorithm would commit to making the first variable at
least � , the second variable at least % and the third variable
at least � , adding these constraints for use in the next and
subsequent iterations. If

� �- % � � was not a feasible solu-
tion, then it would sample from the distribution obtained
by normalizing the fractional parts, (1/7,2/7,4/7), to decide
which variable whose commitment to increase, update the

constraints to respond to this choice, and continue. This also
improved performance markedly. To see why, consider what
happens if the linear programming relaxation has an integer
solution, which happens fairly often on the benchmark data
we have experimented with. With the change of this subsec-
tion, this is recognized immediately and handled appropri-
ately. The random sampling process that would otherwise
be used would often be unlikely to get this solution.

Feature selection

When the data has a large number of numerical attributes,
the number of decision stumps can be prohibitively large.
Since the decision stumps output by the minimum major-
ity algorithm often were contained in those output in the
first

� � � rounds of Adaboost, we performed a feature selec-
tion step in which Adaboost was run for

� � � rounds and the
resulting decision stumps were gathered and passed to the
minimum majority algorithm described above. This change
does not affect the motivation derived from the analysis of
Adaboost (Schapire et al. 1998): their argument showed
that the hypothesis could be approximated using a simple
majority vote of a few hypotheses, even if those hypotheses
were restricted to be chosen from among those participating
in the weighted voting hypotheses output by the boosting
algorithm.

Feature selection is only performed when the number of
decision stumps generated by the original process was more
than

� � � . (In our experiments, it was not performed on the
house dataset, but on all others.)

Ensuring feasibility

We ensure feasibility using a method analogous to the “soft
margin” approach from Support Vector Machines (Cortes
& Vapnik 1995; Klasner & Simon 1995; Rätsch, Onoda, &
Müller 2001). For each example, we add a “slack variable”
to the integer program. The variable for an example has a
coefficient of

�
in the constraint corresponding to that ex-

ample, and does not appear in any other constraints. By in-
creasing the value of that variable enough, one can therefore
satisfy the one constraint in which it appears. These extra
variables are assigned a cost of

� � & in the objective function.
Of course this cost could be made a parameter, to be set us-
ing cross-validation on the training set. (The same value of��� & was used in all of the experiments reported in this paper.
This was not carefully optimized – it was chosen based on
a little tinkering with some simple artificial datasets and the
ionosphere data set.)

Restarting

An obvious modification is to run the algorithm several
times, and output the best solution found. Of course, later
runs can halt when the number of decision stumps in the so-
lution becomes as large as the best solution found so far. In
fact, later runs can halt whenever a fractional solution has
a value that, when rounded up, is at least the best solution
found so far, because the value of the integer solution found
will be at least the value of the fractional solution, and will
be an integer.

Dataset Minmaj Adaboost Adaboost Minmaj
test set 100 rounds 10 rounds hyp.

accuracy test set test set size
accuracy accuracy

promoters 0.883 0.900 0.883 4.4
hepatitis 0.799 0.833 0.838 1.2

ionosphere 0.851 0.904 0.867 8.8
house 0.952 0.965 0.961 1.0

breast-cancer 0.941 0.950 0.949 4.8
pima 0.734 0.751 0.744 1.0

hypothyroid 0.992 0.991 0.990 5.0
sick-euthyroid 0.972 0.966 0.965 5.8

kr-vs-kp 0.965 0.958 0.937 13.0
mushroom 0.9996 1.0000 0.971 10.6

vote-condind 1.000 0.991 0.975 11.0
condind 0.772 0.978 0.838 6.6

Table 1: Our experimental results. Datasets above the dou-
ble line were used in Freund and Schapire’s experimental
evaluation of Adaboost. The entry “Minmaj hyp. size” gives
the average number of decision stumps participating in the
final vote output by the minimum majority algorithm on that
dataset – the other entries should be self-explanatory.

Giving up
In our experiments, the system halted when either

� � � �
consecutive attempts failed to improve on the best solution
found so far, or when a total of two hours of wallclock time
(on a loaded, common use, Sun-Fire) had been expended
trying.

Initial solution
In early versions of the system, sometimes the first run of the
algorithm took a long time before finding a feasible solution.
To combat this, the present system first finds the best solu-
tion possible by combining a single decision stump with the
slack variables described above. Each run of the randomized
rounding algorithm halts when it fails to improve on this.

Experiments
We did experiments using a collection of data sets used in
Freund and Schapire’s experimental evaluation of Adaboost
(Freund & Schapire 1996a). The datasets we used were the
two-class datasets from the UC Irvine Machine Learning
repository that were easiest to put into a common form. We
also experimented with two artificial datasets that we cre-
ated ourselves. For each dataset, we repeated the following
experiment

� � times: hold out a random
��� % of the dataset,

train on the remaining � � % and evaluate the hypothesis on
the held out

� � % . We then added up the results from the
� �

runs and tabulated them in Table 1.
The implementation of Adaboost in our experiments used

the same decision stumps as the minimum majority algo-
rithm, and ran for

� � � iterations. We also ran Adaboost
for only 10 iterations, in order to obtain hypotheses with
roughly the complexity of those output by the minimum
majority algorithm (note that Adaboost’s hypotheses are
weighted majority votes, however).

Dataset #examples #attr
promoters 106 57
hepatitis 155 19

ionosphere 351 34
house 435 16

breast-cancer 699 9
pima 768 8

hypothyroid 3163 25
sick-euthyroid 3163 25

kr-vs-kp 3196 36
mushroom 8124 22

vote-condind 10000 111
condind 150 100

Table 2: Some characteristics of the data used.

One trend that is visible is that the comparative perfor-
mance of the minimum majority algorithm improves as the
number of examples increases. This is consistent with the
view that the advantage of Adaboost is due to exploitation
of groups of hypotheses with independent errors. If the er-
rors of the individuals are not too small, as the number of
examples gets large, all members of such a group must be
included in a majority vote for it to fit the data well. Note
that for three of the datasets, the minimum majority algo-
rithm either always or almost always outputs a single deci-
sion stump.

The artificial datasets are generated as follows. The
dataset vote-condind is the dataset described in the in-
troduction, in which

� �
attributes determine the class label

by majority vote,
� �

are conditionally independent given
the class label, agreeing with it roughly with probability

� � � , and � �
attributes are irrelevant. The dataset described

in the introduction with 100 conditionally independent at-
tributes agreeing with the label with probability � � % is called
condind.

Previous work
Perhaps the most closely related work is that of Grove and
Schuurmans (1998) , who compared the performance of Ad-
aboost with an algorithm that explicitly tried to maximize
the margin using linear programming. The linear program
solved in our algorithm for use to determine the probability
distribution for the choice of the first decision stump is the
same as linear program used to train the hypothesis weights
in their algorithm. Mason, et al (2000) designed an algo-
rithm, called DOOM, that chose the weights of a weighted
voting classifier to optimize a cost function inspired by the
general upper bound on generalization error from (Schapire
et al. 1998) (the more general bound was in terms of the
margin obtained when a certain fraction of the training data
was excluded, together with that fraction). They showed that
DOOM often improved on the generalization of Adaboost.

A number of papers have given a variety of interpretations
of boosting. Friedman, et al (1998) showed that an algo-
rithm closely related to boosting is obtained from additive
logistic regression. An interpretation of boosting as gradi-

ent descent was given by Mason, et al (2000) . Kivinen and
Warmuth (1999) showed that reweighting of the examples
used by boosting was the solution of an optimization prob-
lem involving a tradeoff between keeping the relative en-
tropy between the new and old weightings small and choos-
ing a weighting orthogonal to the vector indicating whether
the previous hypothesis made mistakes on the various ex-
amples (thereby driving the new hypothesis to make errors
approximately independent of the old). Niyogi, et al (2001)
also described a way in which boosting could be viewed as
trying to find hypotheses with independent errors, and de-
scribed an alternative algorithm pursuing this goal in con-
junction with having small errors. Ali and Pazzani (1996)
had established an empirical relationship between the ten-
dency of a base classifier to return hypotheses with indepen-
dent errors and the ability of an ensemble method to improve
it. Freund and Schapire (1996) described a connection be-
tween boosting and game theory. Kutin and Niyogi (2001)
performed an analysis of the generalization of Adaboost us-
ing the notion of algorithmic stability (Bousquet & Elisseeff
2001).

The analysis of Winnow (Littlestone 1988) in (Littlestone
1989) suggests that the inductive bias of Winnow might be
similar to that of the minimum majority algorithm proposed
here.

Conclusion
We have provided experimental evidence that an algorithm
based on the minimum majority principle can generalize like
boosting, while returning simpler hypotheses. This appears
especially to be the case when the dataset is large. Our ex-
periments also suggest an extension to the explanation of
why boosted hypotheses generalize well: in addition to gen-
erating hypotheses that can be approximated by hypotheses
of a simple form, they take full advantage of occasions in
which many simple hypotheses have independent errors.

Source code associated with this work is available at
http://giscompute.gis.nus.edu.sg/˜plong/minmaj.

Acknowledgements
I’d like to thank Edison Liu, Sayan Mukherjee, and Vin-
sensius Vega for valuable conversations about this work and
related topics, and Shirish Shevade, Vinsensius Vega and
anonymous referees for their comments on drafts of this pa-
per.

References
Abney, S.; Schapire, R.; and Singer, Y. 1999. Boosting ap-
plied to tagging and pp attachment. In Proceedings of the
Joint SIGDAT Conference on Empirical Methods in Natu-
ral Language Processing and Very Large Corpora.

Ali, K. M., and Pazzani, M. J. 1996. Error reduction
through learning multiple descriptions. Machine Learning
24(3):173–202.

Bauer, E., and Kohavi, R. 1999. An empirical comparison
of voting classification algorithm: Bagging, boosting and
variants. Machine Learning 105–142.

Bousquet, O., and Elisseeff, A. 2001. Algorithmic stabil-
ity and generalization performance. Advances in Neural
Information Processing Systems 13.
Breiman, L. 1998. Arcing classifiers. The Annals of Statis-
tics.
Cohen, W.; Schapire, R.; and Singer, Y. 1999. Learning to
order things. In Advances in Neural Information Process-
ing Systems 11: Proc. of NIPS’98. MIT Press.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine Learning 20(3):273–297.
Czyzyk, J.; Mehrotra, S.; Wagner, M.; and Wright, S. J.
1999. PCx: An interior-point code for linear programming.
Optimization Methods and Software 11:397–430.
Drucker, H., and Cortes, C. 1996. Boosting decision trees.
In Advances in Neural Information Processing Systems 8,
479–485.
Drucker, H.; Schapire, R.; and Simard, P. 1993. Boosting
performance in neural networks. International Journal of
Pattern Recognition and Artificial Intelligence 7:705 – 719.
Freund, Y., and Schapire, R. E. 1995. A decision-theoretic
generalization of on-line learning and an application to
boosting. Proceedings of the Second European Conference
on Computational Learning Theory 23–37.
Freund, Y., and Schapire, R. 1996a. Experiments with
a new boosting algorithm. Proceedings of the Thirteenth
International Conference on Machine Learning.
Freund, Y., and Schapire, R. 1996b. Game theory, on-line
prediction and boosting. In Proc. 9th Annu. Conf. on Com-
put. Learning Theory, 325–332. ACM Press, New York,
NY.
Freund, Y., and Schapire, R. E. 1997. A decision-
theoretic generalization of on-line learning and an applica-
tion to boosting. Journal of Computer and System Sciences
55(1):119–139.
Freund, Y.; Iyer, R.; Schapire, R.; and Singer, Y. 1998. An
efficient boosting algorithm for combining preferences. In
Proc. 15th International Conference on Machine Learning.
Freund, Y. 1995. Boosting a weak learning algorithm by
majority. Information and Computation 121(2):256–285.
Friedman, J.; Hastie, T.; and Tibshirani, R. 1998. Additive
logistic regression: a statistical view of boosting. Techni-
cal report, Department of Statistics, Sequoia Hall, Stanford
Univerity.
Grove, A., and Schuurmans, D. 1998. Boosting in the
limit: Maximizing the margin of learned ensembles. In
Proceedings of the Fifteenth National Conference on Artif-
ical Intelligence.
Iba, W., and Langley, P. 1992. Induction of one-level de-
cision trees. Proc. of the 9th International Workshop on
Machine Learning.
Iyer, R.; Lewis, D.; Schapire, R.; Singer, Y.; and Singhal,
A. 2000. Boosting for document routing. In Proceedings
of the Ninth International Conference on Information and
Knowledge Management.
Kivinen, J., and Warmuth, M. 1999. Boosting as entropy
projection. In Proc. COLT’99.

Klasner, N., and Simon, H.-U. 1995. From noise-free to
noise-tolerant and from on-line to batch learning. Proceed-
ings of the 1995 Conference on Computational Learning
Theory 250–257.
Kutin, S., and Niyogi, P. 2001. The interaction of stability
and weakness in adaboost. Technical Report TR–2001–30,
The University of Chicago.
Littlestone, N. 1988. Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm. Ma-
chine Learning 2:285–318.
Littlestone, N. 1989. Mistake Bounds and Logarithmic
Linear-threshold Learning Algorithms. Ph.D. Dissertation,
UC Santa Cruz.
Long, P. M. 2001. Using the pseudo-dimension to an-
alyze approximation algorithms for integer programming.
Proceedings of the Seventh International Workshop on Al-
gorithms and Data Structures.
Mason, L.; Bartlett, P. L.; and Baxter, J. 2000. Improved
generalization through explicit optimization of margins.
Machine Learning 38(3):243–255.
Mason, L.; Baxter, J.; Bartlett, P. L.; and Frean, M. 2000.
Boosting algorithms as gradient descent. In Advances in
Neural Information Processing Systems 12, 512–518. MIT
Press.
Niyogi, P.; Pierrot, J.-B.; and Siohan, O. 2001. On decor-
relating classifiers and combining them. Manuscript.
Pach, J., and Agarwal, P. 1995. Combinatorial Geometry.
John Wiley and Sons.
Quinlan, J. 1996. Bagging, boosting and c4.5. In Proceed-
ings of the Thirteenth National Conference on Artifiicial
Intelligence, 725–730. AAAI/MIT Press.
Quinlan, J. R. 1999. Some elements of machine learning.
Proceedings of the Sixteenth International Conference on
Machine Learning 523–524.
Raghavan, P., and Thompson, C. 1987. Randomized
rounding: a technique for provably good algorithms and
algorithmic proofs. Combinatorica 7(4):365–374.
Rätsch, G.; Onoda, T.; and Müller, K.-R. 2001. Soft mar-
gins for AdaBoost. Machine Learning 42(3):287–320. also
NeuroCOLT Technical Report NC-TR-1998-021.
Schapire, R., and Singer, Y. 2000. BoosTexter: A boosting-
based system for text categorization. Machine Learning
39(2/3):135–168.
Schapire, R. E.; Freund, Y.; Bartlett, P.; and Lee, W. S.
1998. Boosting the margin: A new explanation for the
effectiveness of voting methods. The Annals of Statistics
26(5):1651–1686.
Schapire, R.; Singer, Y.; and Singhal, A. 1998. Boosting
and Rocchio applied to text filtering. In Proceedings of
the 21st Annual International Conference on Research and
Development in Information Retrieval.
Schapire, R. E. 1990. The strength of weak learnability.
Machine Learning 5(2):197–226.
Williamson, D. P. 1999. Lecture notes on approximation
algorithms. Technical Report RC–21409, IBM.

