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Abstract

The minimum majority problem is as follows: given a matrix A ∈ {−1, 1}m×n, minimize∑n
i=1 xi subject to Ax ≥ 1 and x ∈ (Z+)n. An approximation algorithm that finds a solution

with value O(opt2 logm) in poly(m,n, opt) time is known, which can be obtained by rounding
a linear programming relaxation.

We establish integrality gaps that limit the prospects for improving on this guarantee through
improved rounding and/or the application of Lovász-Schrijver (LS) or Sherali-Adams (SA) tight-
ening of the relaxation. These gaps show that applying LS and SA relaxations cannot improve
on the O(opt2 logm) guarantee by more than a constant factor in polynomial time.

1 Introduction

This paper is about the minimum majority problem: given A ∈ {−1, 1}m×n, minimize
∑n

i=1 xi
subject to Ax ≥ 1 and x ∈ (Z+)n. This problem is motivated by the margin analysis of boosting
[44] (see [33, 34]). It also formalizes the problem of compressing a learned ensemble [42, 8]; starting
from a classifier that takes a vote over a large number of classifiers, find a small multiset of the
voters that produce the same results on training data.

It is known [25] that, in poly(m,n, opt) time, an algorithm can find a solution with value
O(opt2 logm). This has been proved using boosting [25] and randomized rounding [33]. A simple
and direct proof which borrows ideas from the analysis of boosting [19, 45, 16, 37] is provided in
Section 7. Our work is motivated by the following question: is this O(opt2 logm) algorithm the
best possible?

For many discrete optimization problems, the best polynomial-time approximation algorithm
known may be constructed by rounding the solution of an appropriate relaxation of the problem
[39, 2]. While the “natural” LP relaxation suffices for many problems, adding carefully chosen
constraints can sometimes help get better relaxations. Effective systematic methods for generating
such stronger relaxations have been developed. A popular example of such a “lift-and-project”
method, which recovers the best approximation algorithms in many cases, is the Lovász-Schrijver
(LS) technique [36]. This technique generates a sequence of semi-definite programs with the same
objective function as the original problem, but with feasible regions that approximate the convex
hull of the feasible region of an integer programming problem progressively closely. If N is the size
of the original problem, the rth LS relaxation has size poly(N r), which is polynomial in N if r
is a constant. Arora et al. [4, 2] argued persuasively that the strength of this approach and the
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breadth of its applicability motivates study of its limitations. The main such mode of analysis is an
integrality gap [35], demonstrating that a solution of the relaxed problem obtained after r rounds
of the Lovász-Shrijver method has a solution that is significantly better than the best solution to
the original integer programming problem.

Strong integrality gaps, sometimes for small values of r, have been obtained for several problems
of central interest [35, 20, 52, 47, 11, 21, 2, 29, 31, 5, 17, 27]. Typically, these limit the prospects
for improvements on the approximation ratio that can be achieved in polynomial time (and even in
subexponential time) through LS relaxations: i.e., if opt is the value of the optimal solution, they
limit the prospects for achieving optf(n) for some f(n) (which may be a constant).

In this work, we establish integrality gaps for LS and related lift-and-project relaxations for the
minimum majority problem. We first show that a constant number of levels of LS cannot yield an
improvement on the O(opt2 logm) guarantee. This is a special case of a more general result: for
large enough k, r < k

5 − 1, and m ≥ k3/(r + 1)2, there is an instance A of the minimum majority
problem such that (a) the rth level Lovász-Schrijver relaxation has value k, and (b) any integer
solution has value Ω((k2/(r + 1)2) logm). In additional to providing evidence that LS relaxations
cannot improve on the O(opt2 logm) bound in polynomial time, it also demonstrates dim prospects
for substantially improving on this guarantee while using significantly less than the O(nopt) time
used by a brute-force algorithm.

Another popular lift-and-project method uses Sherali-Adams (SA) [49] relaxations which are
incomparable in strength with LS relaxations1 [32]. We next establish a bound for Sherali-Adams
(SA) relaxations analogous to the one proved for LS relaxations.

As mentioned above, the minimum majority problem is motivated by applications to machine
learning, but the possibility that O(opt2 logm) might be the best possible approximation guarantee
achievable in polynomial time may be of more fundamental and broader interest, since this form is
qualitatively unlike other known bounds.

Other Related Work. For a comparison of various lift-and-project methods, we refer the
reader to the survey by Laurent [32], and to the survey by Chlamtac and Tulsiani [13]. In recent
years, several integrality gaps for SA relaxations have been shown (see e.g. [15, 46, 10, 28, 38, 26,
22, 6, 43, 7, 12]). Other kinds of hardness results for some other sparse learning problems can be
found in [3, 51, 14, 53, 18].

Techniques. Our analysis uses the probabilistic method, choosing the entries ofA ∈ {−1, 1}m×n
independently at random from a distribution that assigns slightly more probability to 1 than −1.
To prove the lower bound for the integer programming solution, we need to show that any small
ensemble is likely to violate one of the constraints – for the candidate solution x, we need a lower
bound on the probability that one of the rows a of A will satisfy a ·x ≤ 0. For this, we need a lower
bound on the tail of a sum of independent random variables. The Berry–Esseen inequality does
not appear to provide enough leverage, and it was also not clear how to apply anti-concentration
techniques such as [50, 40, 48, 30] to get the bounds needed here. (The challenges include the
possibility of relatively large summands and their assymmetric distribution.) Instead, we argue
roughly as follows. First, only the components of a corresponding to nonzero components of x
matter. However, if x is a good solution, then there are few of those components, and, thus, typ-
ically, the probability of the projection of −a onto those components is not too much more than
the probability of the projection of a. It follows that the probability that a · x ≤ 0 cannot be too

1The LS relaxations analyzed here are usually denoted by LS+, and are sometimes tighter than the “plain” LS
relaxations.
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much smaller than the probability that a ·x ≥ 0, which in turn means that it cannot be very small,
period.

In contrast, the fractional solution benefits from the stability conferred by averaging over all
of the variables. This can be established using standard techniques such as Hoeffding bounds and
the union bound for the linear programming relaxation. Applying a “protection lemma” of [23]
demonstrates that it survives multiple rounds of LS tightening; we prove a similar protection lemma
for SA relaxations. The fractional solution qualifies for these protection lemmas because it is far
from violating any of the constraints.

As mentioned above, this work suggests that the unusual O(opt2 logm) guarantee may be the
best possible for this problem. Based on our proof, this is in part because a fractional solution is
especially good when the constraints depend on a lot of variables. In this respect, the minimum
majority problem differs fundamentally from many of the problems whose approximation proper-
ties are frequently studied – many of these concern graphs and/or have sparse constraints. The
minimum majority problem may be a representative of a class of problems with fundamentally
different approximation properties, and as such may be an interesting subject for further study.

2 Preliminaries

Let opt(A) be the minimum of
∑n

i=1 xi subject to Ax ≥ 1 and x ∈ (Z+)n. (If Ax ≥ 1 is
unsatisfiable, define opt(A) =∞.) Let optL(A) be the minimum of

∑n
i=1 xi subject to Ax ≥ 1 and

x ≥ 0.

Lemma 1 ([41]) Let U1, ..., U` be independent random variables with each Ui taking values in

[ai, bi] and let S =
∑`

i=1 Ui. Then Pr(S ≥ E(S) + η) ≤ exp
(

−2η2∑`
i=1(bi−ai)2

)
.

3 An integrality gap for linear programming

As a warmup, we prove the following integrality gap theorem for the linear programming relaxation.

Theorem 2 There are constants k0, c > 0 and a polynomial p, such that, for all k ≥ k0 and
m ≥ k3, there is an n ∈ N such that n ≤ p(k, lnm), and A ∈ {−1, 1}m×n, such that optL(A) ≤ k
and opt(A) ≥ ck2 lnm.

3.1 Setup

The proof uses the probabilistic method, analyzing matrices A chosen at random. Setting, with

foresight, γ = 1
k , d =

⌊
k2 lnm

43

⌋
, n =

⌈
4k2 lnm

⌉
, consider A ∈ {−1, 1}m×n whose entries are drawn

i.i.d., with Pr(Aij = 1) = 1/2 + γ, for γ ≤ 1/5. (We can ensure that γ ≤ 1/5 by setting k ≥ 5.)
We set up some notation next. Let S(n, d) consist of all x ∈ (Z+)n such that

∑n
i=1 xi ≤ d (or,

equivalently, all multisets of at most d elements of [n]).
Say that x ∈ S(n, d) is hit by row i, if row i witnesses the infeasibility of x, i.e., if

∑n
j=1Aijxj ≤ 0.

Say x is hit by A if it is hit by some row of A.
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3.2 The hit probability

This section analyzes the probability that a prospective solution is hit by a single row. Let Q be
the distribution governing the choice of a single row of A, n i.i.d. draws from a distribution over
{−1, 1} that assigns probability 1/2 + γ to 1. For some realization a of a row of A, we will use the
shorthand Q(a) for Q({a}), the probability of generating a.

The following will be proved in this subsection.

Lemma 3 For all large enough k0, for any x ∈ S(n, d), we have Pra∼Q(a·x ≤ 0) ≥ exp(−14γ2d).

Proof (of Lemma 3): First, for any realization a, we have

Q(−a)

Q(a)
=

(1/2 + γ)|{j:aj=−1}|(1/2− γ)|{j:aj=1}|

(1/2 + γ)|{j:aj=1}|(1/2− γ)|{j:aj=−1}|

=

(
1− 2γ

1 + 2γ

)∑n
j=1 aj

. (1)

Let us say that a ∈ {−1, 1}n is balanced if |
∑n

i=1 ai| ≤ 3γn and let B be the event that a random
row is balanced. Since Ea∼Q (

∑n
i=1 ai) = 2γn, Lemma 1 implies

Q(B) = Pra∼Q

(∣∣∣∣∣
n∑
i=1

ai

∣∣∣∣∣ ≤ 3γn

)
≥ 1− 2 exp

(
−γ

2n

2

)
. (2)

Furthermore, for a ∈ B,

Q(−a)

Q(a)
=

(
1− 2γ

1 + 2γ

)∑
i ai

≤
(

1 + 2γ

1− 2γ

)3γn

≤ e13γ2n (3)

since γ ≤ 1/5.
We have

1

Pra∼Q(a · x ≤ 0)
≤

Pra∼Q(a · x ≤ 0) + Pra∼Q(a · x ≥ 0)

Pra∼Q(a · x ≤ 0)

= 1 +
Pra∼Q(−a · x ≤ 0)

Pra∼Q(a · x ≤ 0)
.
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Furthermore

Pra∼Q(−a · x ≤ 0)

Pra∼Q(a · x ≤ 0)
=

∑
a:(−a)·x≤0Q(a)∑
a:a·x≤0Q(a)

=

∑
a:a·x≤0Q(−a)∑
a:a·x≤0Q(a)

=

∑
a∈B:a·x≤0Q(−a) +

∑
a 6∈B:a·x≤0Q(−a)∑

a∈B:a·x≤0Q(a) +
∑

a 6∈B:a·x≤0Q(a)

≤
∑

a∈B:a·x≤0Q(a)e13γ2n +
∑

a6∈B:a·x≤0Q(−a)∑
a∈B:a·x≤0Q(a) +

∑
a6∈B:a·x≤0Q(a)

(by (3))

≤ e13γ2n +

∑
a 6∈B:a·x≤0Q(−a)∑

a∈B:a·x≤0Q(a) +
∑

a6∈B:a·x≤0Q(a)

= e13γ2n +

∑
a6∈B:a·x≤0Q(−a)

Pra∼Q(a · x ≤ 0)
.

Finally, ∑
a6∈B:a·x≤0

Q(−a) ≤
∑
a 6∈B

Q(−a) =
∑
a6∈B

Q(a) ≤ 2e−γ
2n/2

by (2).
Tracing back, we get

1

Pra∼Q(a · x ≤ 0)
≤ 1 + e13γ2n +

2e−γ
2n/2

Pra∼Q(a · x ≤ 0)
.

Solving for Pra∼Q(a · x ≤ 0) yields

Pra∼Q(a · x ≤ 0) ≥ 1− 2e−γ
2n/2

1 + e13γ2n
.

Note that the truth or falsehood of a · x ≤ 0 is determined by {ai : i ∈ [n], xi 6= 0}. Since
x ∈ S(n, d), when proving this lemma, ignoring the irrelevant components of a, we may assume
without loss of generality that n ≤ d. Thus,

Pra∼Q(a · x ≤ 0) ≥ 1− 2e−γ
2d/2

1 + e13γ2d
≥ e−14γ2d

for all large enough k0, since m ≥ k3 and d = Ω(k2 lnm), completing the proof.

3.3 Analyzing optL and opt

Proof (of Theorem 2): Armed with Lemma 3, we are ready to analyze optL(A) and opt(A) for
a random A. Let Q be the distribution governing the random choice of A, and, as before, let Q be
the distribution of any row of A.
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First, we claim that PrA∼Q(optL(A) ≤ k) ≥ 2/3. To see this, consider the solution x1 = ... =
xn = k/n. Then

∑n
i=1 xi = k, and, for any row a of A, Ea∼Q(a ·x) = 2γk = 2. Applying Lemma 1

and a union bound,

PrA∼Q(¬Ax ≥ 1) ≤ m exp

(
−2

n(2k/n)2

)
= m exp

(
−n
2k2

)
≤ m exp (−2 lnm) ≤ 1/3

for large enough k (since m ≥ k3), proving that PrA∼Q(optL(A) ≤ k) ≥ 2/3.
Now we want a lower bound on the probability that opt(A) > d. If, for all x ∈ S(n, d), x is hit

by some row of A, then opt(A) > d. Thus, if we denote the set of rows of A by A, we may apply
Lemma 3 to get

PrA∼Q(opt(A) ≤ d) = Pr(∃x ∈ S(n, d), ∀a ∈ A,a · x > 0)

≤
∑

x∈S(n,d)

∏
a∈A

(1−Pra∼Q(a · x ≤ 0))

≤
∑

x∈S(n,d)

∏
a∈A

(
1− exp(−14γ2d)

)
(by Lemma 3)

=

(
d+ n

d

)(
1− exp(−14γ2d)

)m
≤ exp

(
d
(

1 + ln
(n
d

))
−m exp(−14γ2d)

)
.

Substituting the values of d, n, and γ, recalling m ≥ k3, for all large enough values of k0, we have

PrA∼Q(opt(A) ≤ d) ≤ exp

(
k2 lnm−m exp

(
−14 lnm

43

))
,

and, once again since m ≥ k3, for a large enough value of k, this implies

PrA∼Q(opt(A) ≤ d) ≤ 1/3.

Combining this with PrA∼Q(optL(A) ≤ k) ≥ 2/3, this completes the proof

4 A 0/1 integer programming formulation

Systematic methods for constructing more refined relaxations of integer programming problems
often are designed for the case in which the variables are constrained to 0/1 values. If algorithms
are allowed time polynomial in opt, as well as n and m, then they can make use of integer programs
that use poly(n,m, opt) variables. A natural formulation of the minimum majority problem as a 0/1
integer programming problem satisfies this requirement. Define the q-bounded minimum majority
problem to be the minimum majority problem under the additional restriction that each variable
is included the solution with multiplicity at most q. We may formulate the q-bounded minimum
majority problem as follows, where U is an n× q matrix:

min
n∑
j=1

q∑
`=1

Uj,`, s.t. ∀i,
n∑
j=1

Aij

q∑
`=1

Uj` ≥ 1, ∀j, `, Uj` ∈ {0, 1}.
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When q ≥ opt, this is equivalent to the original minimum majority problem. An (approximation)
algorithm may then solve the original minimum majority problem by “guessing” a suitable upper
bound q. One may view Uj` as an indicator function for xj ≥ `, so that xj =

∑q
`=1 Uj`.

Another alternative uses a binary encoding:

min
n∑
j=1

q∑
`=1

2`−1Uj,`, s.t. ∀i,
n∑
j=1

Aij

q∑
`=1

2`−1Uj` ≥ 1, ∀j, `, Uj` ∈ {0, 1}.

This is equivalent to the original minimum majority problem when q ≥ log2 opt, and, again, an
approximation algorithm could “guess” a suitable value of q.

Both of these fall within the class of algorithms that perform

min

n∑
j=1

q∑
`=1

β`Uj,`, s.t. ∀i,
n∑
j=1

Aij

q∑
`=1

β`Uj` ≥ 1, ∀j, `, Uj` ∈ {0, 1}

for β1 = 1 and β2, ..., βq ∈ N. The natural linear programming relaxation of such an integer program
replaces each constraint that Uj` ∈ {0, 1} with Uj` ∈ [0, 1]. We will prove integrality gaps for all
such programs.

5 Gaps for Lovász-Schrijver relaxations

In this section, we establish integrality gaps for Lovász-Schrijver (LS) relaxations of 0/1 integer
programming formulations of the minimum majority problem.

5.1 Definition of LS relaxations and statement of gap theorem

Lovász-Schrijver relaxations are obtained through rounds, which progressively tighten the relax-
ation. Here is the definition of one round, following [23, 2]. (For intuition, please see [36, 13].)
Before the round, the feasible region is P = {x : Ax ≥ b,x ∈ [0, 1]n}.

The first step is to embed P into Rn+1, to produce a cone K that may be regarded as equivalent:
K = {(x0,x) : Ax ≥ x0b,x ∈ [0, x0]n}. When analyzing K, we will number indices from 0 as usual;
for each i ∈ {0, ..., n}, let ei be the element of {0, 1}n+1 with a 1 only in position i.

Next is the “lifting” step, which defines a subset M(K) of R(n+1)×(n+1), which might be thought
of as constraints on products of pairs of variables. A symmetric Y is in M(K) if

• Y e0 = diag(Y ), and

• Y ei, Y (e0 − ei) ∈ K for all i ∈ {1, ..., n}.

The set M+(K) is obtained from M(K) by adding the constraint that Y is positive semi-definite.
Next is the “project” step, producing N+(K) = {diag(Y ) : Y ∈ M+(K)}. The extra variable

added when K was defined is still present in N+(K). To get N+(P ), it is removed, by setting
N+(P ) = {(x1, ...., xn) : (1, x1, ..., xn) ∈ N+(K)}.

This process can be iterated: N0
+(P ) = P and N r

+(P ) = N+(N r−1
+ (P )).

Definition 4 For q ∈ N and β = (β1, ..., βq), let optLS,r,β(A) be the value of the optimal solution
to minimizing

∑n
j=1

∑q
`=1 β`Uj` subject to membership in N r

+(P ).
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Note that, for q ≥ opt(A), we have optL(A) = optLS,0,β(A). Here is the gap theorem for LS
relaxations.

Theorem 5 For all r ∈ N, there are constants k0, c > 0 and a polynomial p, such that, for
all k ∈ Z+ such that k > max{k0, 5(r + 1)} and m ≥ k3/(r + 1)2, there is an n ∈ N with
n ≤ p(k, lnm), and A ∈ {−1, 1}m×n, such that, for any q ≥ 1, for any β ∈ Nq, optLS,r,β(A) ≤ k,

but opt(A) ≥ c
(

k
r+1

)2
lnm.

5.2 Setup

As in the proof of Theorem 2, this proof analyzes matrices A chosen at random. Let γ = r+1
k , d =⌊

k2 lnm
43(r+1)2

⌋
, n =

⌈
4k2 lnm
(r+1)2

⌉
, consider A ∈ {−1, 1}m×n whose entries are drawn i.i.d., with Pr(Aij =

1) = 1/2 + γ. (Note that, since k > 5(r + 1), we have γ < 1/5.)
Let S(n, d,β) consist of all U ∈ {0, 1}n×q such that

∑n
i=1

∑q
j=1 βjUij ≤ d.

Lemma 6 If k0 is large enough,
Pr(opt(A) ≤ d) ≤ 1/3.

Proof: By construction, for any U ∈ S(n, d,β), there is in x ∈ (Z+)n such that Ax ≥ 1 iff U is
feasible.

Noting that, as before, d =
⌊

lnm
γ243

⌋
, n =

⌈
4 lnm
γ2

⌉
, and γ ≤ 1/5, exactly the same analysis as in

the proof of Theorem 2 then implies that

Pr(opt(A) ≤ d) ≤ exp
(
d
(

1 + ln
(n
d

))
−m exp(−14γ2d)

)
.

Using the values of d, n and γ from this proof, we get

Pr(opt(A) ≤ d) ≤ exp

(
k2 lnm

r2
−m exp

(
−14 lnm

43

))
,

which, as before, is at most 1/3 for large enough k, since m ≥ k3/(r + 1)2.

5.3 A protection lemma

Recall that the LS technique works by tightening the constraints so that N r
+(P ) is an increasingly

accurate approximation to the feasible region for the 0/1 integer program associated with A. So,
to establish an integrality gap, we would like to show that a fractional solution that is much better
than the best integer solution can survive many LS lift-project rounds.

The first step is a “protection lemma”, which describes conditions under which a fractional
solution survives one round.

To state this protection lemma, the following definition will be helpful. For x ∈ [0, 1]n, i ∈
{1, ..., n} and b ∈ {0, 1}, let round(x, i, b) be the element of [0, 1]n obtained by replacing xi with b.

We will use Lemma 9 of [9], attributed there to [23] (see also the third paragraph after Lemma
2.1 in [1]).

Lemma 7 ([23]) If x ∈ P and, for any i ∈ {1, ..., n}, round(x, i, 0) ∈ P and round(x, i, 1) ∈ P ,
then x ∈ N+(P ).
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For I ⊆ {1, ..., n} and b ∈ {0, 1}|I|, define round(x, I,b) analogously to round(x, i, b). As observed
in [2], Lemma 7 has the following corollary, which can be proved by induction.

Lemma 8 ([2]) If x ∈ P and, for any I ∈ {1, ..., n} with |I| = r and any b ∈ {0, 1}r, round(x, I,b) ∈
P , then x ∈ N r

+(P ).

5.4 Bounding optLS,r,β

Lemma 9 Pr(optLS,r,β(A) ≤ k) ≥ 2/3.

Proof: Consider the solution U with U11 = ... = Un1 = k
n and Uij = 0 for all j > 1.

For a subset I of index pairs, which index into components of U , and b ∈ {0, 1}|I|, define
round(U, I,b) analogously to round(x, I,b) to be the result of rounding the values indexed by I
using the values in b. For any row a of A, since the components of a are all in {−1, 1}, rounding
any entry in U can change any component of AU1 by at most 1. Thus, if x = U1, we have

PrA(∃I, |I| = r,b ∈ {0, 1}r,¬A round(U, I,b) 1 ≥ 1) ≤ PrA(¬AU1 ≥ (r + 1)1)

= PrA(¬Ax ≥ (r + 1)1).

For any row a of A, Ea(a · x) = 2γk = 2(r + 1). Applying Lemma 1 and a union bound,

Pr(¬Ax ≥ (r + 1)1) ≤ m exp

(
−2(r + 1)2

n(2k/n)2

)
= m exp (−2 lnm) ≤ 1/3

for large enough k, proving that Pr(optLS,r,β(A) ≤ k) ≥ 2/3.

5.5 Putting it together

Proof (of Theorem 5): Combining Lemmas 6 and 9, a random A satisfies the requirements of
Theorem 5 with probability at least 1/3.

6 Gaps for Sherali-Adams relaxations

In this section, we establish integrality gaps for Sherali-Adams (SA) relaxations of an integer
programming formulation of the minimum majority problem.

6.1 Definition of SA relaxations and statement of gap theorem

The description is based on [13], which also gives useful intuition.
Let P = {x : Ax ≥ b}. Assume that the constraints that define P include 0 ≤ xi ≤ 1 for all

variables i.
The level-r SA relaxation is obtained through the following steps: For each constraint a · x ≥ b

from the original problem, and each pair I and J of disjoint subsets of [n] such that |I|+ |J | = r,
add the constraint

(a · x− b)

(∏
i∈I

xi

)∏
j∈J

(1− xj)

 ≥ 0.
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Expand each LHS to express it as a sum of monomials. For each term, replace any xkj for k > 1
with xj (the degree reduction step). Define a variable YS for each set of at most r+ 1 variables. For
each LHS, replace each term (which is now a product of a set S of at most r+ 1 variables) with YS .
(The result is a set of linear inequalities over {YS : S ⊆ [n], |S| ≤ r + 1}, which defines a polytope
Q in

∑r+1
j=0

(
n
j

)
dimensions.) Finally, project the result onto {YS : S ⊆ [n], |S| = 1}.

If we denote SAr(P ) be the level-r SA relaxation of P , then x ∈ SAr(P ) if and only if there is
an assignment y to {YS : S ⊆ [n], |S| ≤ r + 1} such that y ∈ Q and xi = y{i} for all i ∈ [n].

Let N =
∑r+1

k=0

(
n
k

)
be the dimension of this higher dimensional space.

Definition 10 Let optSA,r,β(A) be the value of the optimal solution to minimizing

n∑
j=1

q∑
`=1

β`Uj`

subject to membership in SAr(P ).

Theorem 11 For all r ∈ N , there are constants k0, c > 0 and a polynomial p such that, for all
k ∈ Z+ such that k > max{k0, 5(r+1)} and m ≥ k3/(r+1)2, there is an n ∈ N with n ≤ p(k, lnm)
and there is an A ∈ {−1, 1}m×n, such that, for any q ≥ 1, for any β ∈ Nq, optSA,r,β(A) ≤ k, but

opt(A) ≥ c
(

k
r+1

)2
lnm.

6.2 A protection lemma

A protection lemma analogous to Lemma 8 also holds for SA relaxations.

Lemma 12 If x ∈ P and, for any I ∈ {1, ..., n} with |I| ≤ r and any b ∈ {0, 1}|I|, round(x, I,b) ∈
P , then x ∈ SAr(P ).

Proof: Let Q be the polytope in RN whose projection yields SAr(P ). Let φ be the mapping from
Rn to RN defined by φ(x) = y, where y is indexed by subsets of at most r+ 1 elements of [n], and
yS =

∏
i∈S xi. Note that, if φ(x) ∈ Q, we have x ∈ SAr(P ).

Now, choose x satisfying the hypotheses of the lemma. To prove that x ∈ SAr(P ), it suffices
to prove that φ(x) ∈ Q. Choose a constraint from among those defining Q: suppose that it was
derived from the original constraint ax ≥ b together with index sets I and J . The constraint in
RN arising from the Sherali-Adams process is

∑
J ′⊆J(−1)|J

′| (∑n
`=1 aiYS∪J ′∪{`} − bYS∪J ′

)
≥ 0 (see

[13]). Thus, it suffices to prove

∑
J ′⊆J

(−1)|J
′|

 n∑
i=1

ai
∏

`∈I∪J ′∪{i}

x` − b
∏

`∈I∪J ′
x`

 ≥ 0. (4)

Toward this end, consider x′ obtained by rounding x as follows. Note that the LHS of (4) is linear
in each x`, if the other components of x are fixed. Thus, for each ` ∈ I ∪ J , the LHS of (4) is
either non-increasing or non-decreasing in x` as it varies between 0 and 1. Thus, there is a choice
of how to round x` to either 0 or 1 that does not change the sign of the LHS from non-negative to
negative, or from negative to non-negative. Let x′ be constructed from x by rounding elements of
I ∪ J one at a time in this manner.

10



We consider two cases. First suppose that a member of I was rounded to 0 or a member of J
was rounded to 1. Then (a ·x′− b)(

∏
i∈I x

′
i)(
∏
j∈J(1−x′j)) = 0, and, since all the variables affected

by the degree reduction step are in I ∪ J , and this degree reduction has no effect for elements of
{0, 1}, this implies ∑

J ′⊆J
(−1)|J

′|

 n∑
i=1

ai
∏

`∈I∪J ′∪{i}

x′` − b
∏

`∈I∪J ′
x′`

 = 0.

Since the transformation from x to x′ did not change the sign from negative to non-negative, this
implies that (4) holds.

Now, suppose that all members of I were rounded to 1, and all members of J were rounded

to 0. Then
∑

J ′⊆J(−1)|J
′|
(∑n

i=1 ai
∏
`∈I∪J ′∪{i} x

′
` − b

∏
`∈I∪J ′ x

′
`

)
= a · x′ − b ≥ 0, since x′ was

obtained from x by rounding at most r components. This completes the proof.

6.3 Putting it together

Proof (of Theorem 11): The proof is exactly the same as the proof of Theorem 5, except
replacing Lemma 8 with Lemma 12.

7 A simple and direct proof of an upper bound

The algorithm solves the more general problem: for A ∈ {−1, 1}m×n and b ∈ Zm, minimize
∑n

i=1 xi
subject to Ax ≥ b, and x ∈ (Z+)n. We have a problem for each (A,b) pair; let opt(A,b) be the
value of its optimal solution. (Let us use the shorthand opt(A) for opt(A, (1, 1, ..., 1)T ). Then, if,
for each variable i, we denote the ith column of A by Ai, we have

opt(A,b) = 1 + min
i

opt(A,b−Ai). (5)

To see this, consider commiting to make xi ≥ 1. This gives rise to a subproblem of a similar
form with the constraints updated as indicated. Obviously, if no component of b is positive, then
opt(A,b) = 0.

The algorithm exploits this recursive structure using a parameter η ∈ (0, 1/2) that will be set
using the analysis:

• if no component of b is positive, return (0, 0, ..., 0) and halt,

• otherwise,

– choose i to minimize
∑m

t=1 exp(η(bt −Ati)),
– recurse to solve the problem with b replaced by b−Ai, getting x,

– return the solution obtained from x by adding 1 to xi.

Let us call
∑m

t=1 exp(ηbt) the potential.
Our analysis of this algorithm uses the following, which is essentially the discriminator lemma

[24].

Lemma 13 For any r ∈ [0,∞)m, there is an i such that rTAi ≥ rTb
opt(A,b) .

11



Proof: First, since all components of r are non-negative, rTAx ≥ rTb for all feasible x. If x∗ is
an optimum, if we sample i from x∗/||x∗||1 = x∗/opt(A,b), we have E(rTAi) = rTAx∗

||x∗||1 ≥
rT b
||x∗||1 ,

completing the proof.
Lemma 13 implies that,

∀r ∈ (R+)m, ∃i, r ·Ai
||r||1

≥ 1

opt(A)
. (6)

Note that this is a property of A, and that A does not change as the algorithm progresses, so that
(6) always remains true throughout the recursion.

Now, we want to bound the reduction in the potential prior to the recursive call. Let Pnew =
mini∈[n]

∑m
t=1 exp(η(bt−Ati)) be the new potential, and Pold =

∑m
t=1 exp(ηbt) be the old potential.

We have

Pnew/Pold

=
1

Pold
min
i∈[n]

m∑
t=1

exp(η(bt −Ati))

=
1∑m

t=1 exp(ηbt)
min
i∈[n]

m∑
t=1

(
e−η + eη

2
+
e−η − eη

2
Ati

)
exp(ηbt)

≤ e−η + eη

2
+
e−η − eη

2opt
,

by (6). Applying Taylor series, we have

Pnew/Pold ≤ 1− η

opt
+ (1/2 + o(1))η2.

Setting η = 1
opt (and we may assume w.l.o.g. that the algorithm “knows” opt, since it can guess

progressively larger values), we get

Pnew/Pold ≤ 1− (1/2− o(1))
1

opt2 .

If b = (1, 1, ...1), the potential starts at m exp(η). After s recursive calls, it is at most(
1− (1/2− o(1))

1

opt2

)s
m exp(η).

When all components of b are at most 0, we may stop. If we have not stopped, the potential is at
least eη. Thus, on input (A, (1, 1, ..., 1)T ), the number of recursive calls before stopping is at most
(2 + o(1))opt(A)2 lnm. This bounds the total number of times that the solution is incremented
when returning from the nested recursion, completing the proof.
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