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Abstract

This paper is about two generalizations of the mistake bound model to online multiclass
classification. In the standard model, the learner receives the correct classification at the
end of each round, and in the bandit model, the learner only finds out whether its prediction
was correct or not. For a set F of multiclass classifiers, let optstd(F ) and optbandit(F ) be
the optimal bounds for learning F according to these two models. We show that an

optbandit(F ) ≤ (1 + o(1))(|Y | ln |Y |)optstd(F )

bound is the best possible up to the leading constant, closing a Θ(log |Y |) factor gap.
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1. Introduction

There are two natural ways to generalize the mistake-bound model (Littlestone, 1988) to
multiclass classification (Auer et al., 1995).

In the standard model, for a set F of functions from some set X to a finite set Y , for
an arbitrary f ∈ F that is unknown to the algorithm, learning proceeds in rounds, and in
round t, the algorithm

• receives xt ∈ X,

• predicts ŷt ∈ Y , and

• gets f(xt).

The goal is to bound the number of prediction mistakes in the worst case, over all possible
f ∈ F and x1, x2, ... ∈ X.

The bandit model (Dani et al., 2008; Crammer and Gentile, 2013; Hazan and Kale,
2011) (called “weak reinforcement” in (Auer et al., 1995; Auer and Long, 1999)) is like the
standard model, except that, at the end of each round, the algorithm only finds out whether
ŷt = f(xt) or not.

Obviously, optstd(F ) ≤ optbandit(F ). It is known (Auer and Long, 1999) that, for all F ,

optbandit(F ) ≤ (2.01 + o(1)) (|Y | ln |Y |) optstd(F ), (1)
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and that, for any k and M , there is a set F of functions from a set X to a set Y of size k
such that optstd(F ) = M and

optbandit(F ) ≥ (|Y | − 1) optstd(F ),

so that (1) cannot be improved by more than a log factor.
This note shows that, for all M > 1 and infinitely many k, there is a set F of functions

from a set X to a set Y of size k such that optstd(F ) = M and

optbandit(F ) ≥ (1− o(1)) (|Y | ln |Y |) optstd(F ), (2)

and that an
optbandit(F ) ≤ (1 + o(1)) (|Y | ln |Y |) optstd(F ) (3)

bound holds for all F .
Previous work. In addition to the bounds described above, on-line learning with ban-

dit feedback, side-information and adversarially chosen examples has been heavily studied
(see (Helmbold et al., 2000; Auer et al., 2002; Abe et al., 2003; Auer, 2002; Kakade et al.,
2008; Chu et al., 2011; Bubeck and Cesa-Bianchi, 2012; Crammer and Gentile, 2013)).
Daniely and Helbertal (2013) studied the price of bandit feedback in the agnostic on-line
model, where the online learning algorithm is evaluated by comparison with the best mis-
take bound possible in hindsight obtained by repeatedly applying a classifier in F . The
proof of (2) uses analytical tools that were previously used for experimental design (Rao,
1946, 1947), and hashing, derandomization and cryptography (Carter and Wegman, 1977;
Luby and Wigderson, 2006). The proof of (3) uses tools based on the Weighted Majority
algorithm (Littlestone and Warmuth, 1989; Auer and Long, 1999).

2. Preliminaries and main results

2.1. Definitions

Define optbs(k,M) to be the best possible bound on optbandit(F ) in terms of M = optstd(F )
and k = |Y |. In other words, optbs(k,M) is the maximum, over sets X and sets F of
functions from X to {0, ..., k − 1} such that optstd(F ) = M , of optbandit(F ).

We denote the limit supremum by lim.

2.2. Results

The following is our main result.

Theorem 1

limM→∞limk→∞
optbs(k,M)

kM ln k
= 1.

2.3. The extremal case

For any prime p, let FL(p, n) be the set of all linear functions from {0, ..., p−1}n to {0, ..., p−
1}, where operations are done with respect the finite field GF (p).
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In other words, for each a ∈ {0, ..., p − 1}n, let fa : {0, ..., p − 1}n → {0, ..., p − 1} be
defined by

fa(x) = (a · x) mod p

and let FL(p, n) = {fa : a ∈ {0, ..., p− 1}n}.
The fact that

optstd(FL(p, n)) = n (4)

for all primes p ≥ 2 is essentially known (see (Shvaytser, 1988; Auer et al., 1995; Blum,
1998)). (An algorithm can achieve a mistake bound of n by exploiting the linearity of the
target function to always predict correctly whenever xt is in the span of previously seen
examples. An adversary can force mistakes on any linearly independent set of the domain
by answering whichever of 0 or 1 is different from the algorithm’s prediction.)

3. Lower bounds

Our lower bound proof will use an adversary that maintains a version space (Mitchell, 1977),
a subset of FL(p, n) that could still be the target. To keep the version space large no matter
what the algorithm predicts, the adversary chooses a xt for round t that divides it evenly.
The first lemma analyzes its ability to do this.

Lemma 2 For any S ⊆ {1, ..., p− 1}n, there is a u such that for all z ∈ {0, ..., p− 1},

|{s ∈ S : s · u = z mod p}| ≤ |S|/p+ 2
√
|S|.

Lemma 2 is similar to analyses of hashing (see (Blum, 2011)).
Lemma 2 is proved using the probabilistic method. The next two lemmas about the

distribution of splits for random domain elements may already be known; see e.g. (Luby
and Wigderson, 2006; Blum, 2011) for proofs of some closely related statements. We in-
cluded proofs in appendices because we do not know a reference with proofs for exactly the
statements needed here.

Lemma 3 Assume n ≥ 1. For u chosen uniformly at random from {0, ..., p−1}n, for any
s ∈ {0, ..., p− 1}n − {0} for any z ∈ {0, ..., p− 1}, we have

Pr(s · u = z mod p) = 1/p.

Proof: See Appendix A.

Lemma 4 Assume n ≥ 2. For u chosen uniformly at random from {0, ..., p−1}n, for any
s, t ∈ {1, ..., p− 1}n such that s 6= t, and for any z ∈ {0, ..., p− 1}, we have

Pr(t · u = z mod p | s · u = z mod p) = 1/p.

Proof. See Appendix B.
Armed with Lemmas 3 and 4, we are ready for the proof of Lemma 2.
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Proof (of Lemma 2): Let S be an arbitrary subset of {1, ..., p − 1}n. Choose u
uniformly at random from {0, ..., p−1}n. For each z ∈ {0, ..., p−1}, let Sz be the (random)
set of s ∈ S such that s · u = z mod p. Lemma 3 implies that, for all z,

E(|Sz|) = |S|/p

and, since Lemmas 3 and 4 imply that the events that s · u = z are pairwise independent,

Var(|Sz|) = Var(1s·u=z)|S| = (1/p)(1− 1/p)|S| < |S|/p.

Using Chebyshev’s inequality,

Pr(|Sz| ≥ |S|/p+ 2
√
|S|) ≤ 1

4p
.

Applying a union bound, with probability at least 3/4,

∀z, |Sz| ≤ |S|/p+ 2
√
S,

completing the proof.
Now we are ready for the learning lower bound.

Lemma 5

limn→∞limp→∞
optbandit(FL(p, n))

pn ln p
≥ 1. (5)

Proof: Choose n ≥ 3 and p ≥ 5. Consider an adversary that maintains a list Ft of members
of

{fa : a ∈ {1, ..., p− 1}n} ⊆ FL(p, n)

that are consistent with its previous answers, always answers “no”, and picks xt for round
t that splits Ft as evenly as possible; that is, xt minimizes the maximum, over potential
values of ŷt, of |Ft ∩ {f : f(xt) = ŷt}|. As long as |Ft| ≥ p2 ln p, Lemma 2 implies that,

|Ft+1| ≥ |Ft| −
|Ft|
p
− 2
√
|Ft|

≥ |Ft| −
|Ft|
p
− 2|Ft|
p
√

ln p

=

(
1−

(
1 + 2/

√
ln p

p

))
|Ft|.

Thus, by induction, we have

|Ft| ≥
(

1−
(

1 + 2/
√

ln p

p

))t−1
(p− 1)n.

The adversary can force m mistakes before |Ft| < p2 ln p if(
1− 1 + 2/

√
ln p

p

)m−1
(p− 1)n ≥ p2 ln p

which is true for m = (1− o(1))np ln p, proving (5).
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4. Upper bound

The upper bound proof closely follows the arguments in (Littlestone and Warmuth, 1989;
Auer and Long, 1999).

Lemma 6 For any set F of functions from some set X to {0, ..., k − 1},

optbandit(F ) ≤ (1 + o(1))(k ln k)optstd(F ).

Proof: Consider an algorithm Ab for the bandit model, which uses an algorithm As for the
standard model as a subroutine, defined as follows. Algorithm Ab maintains a list of copies
of algorithm As that have been given different inputs. For α = 1

k ln k , each copy of As is
given a weight: if it has made m mistakes, its weight is αm. In each round, Ab uses these
weights to make its prediction by taking a weighted vote over the predictions made by the
copies of As.

Algorithm Ab starts with a single copy. Whenever it makes a mistake, all copies of As
that made a prediction that was not used by Ab “forget” the round – their state is rewound
as if the round did not happen. Each copy of As that voted for the winner is cloned,
including its state, to make k−1 copies, and each copy is given a different “guess” of f(xt).

Let Wt be the total weight of all of the copies of As before round t. Since one copy of
As always gets correct information, for all t, we have

Wt ≥ αoptstd(F ). (6)

On the other hand, after each round t in which Ab makes a mistake, copies of As whose
total weight is at least Wt/k are cloned to make k−1 copies, each with weight α < 1/(k−1)
times its old weight. Thus

Wt+1 ≤ (1− 1/k)Wt + (1/k)(α(k − 1)Wt) < (1− 1/k)Wt + αWt

and, after Ab has made m mistakes,

Wt < (1− 1/k + α)m < e−(1/k−α)m.

Combining with (6) yields

e−(1/k−α)m > αoptstd(F )

which implies m ≤ ln(1/α)optstd(F )
1/k−α and substituting the value of α completes the proof.

5. Putting it together

Theorem 1 follows from (4), Lemma 5, and Lemma 6.

6. Two open problems

There appears to be a Θ(
√

log |Y |) gap between the best known upper and lower bounds
on the cost of bandit feedback for on-line multiclass learning in the agnostic model (Daniely
and Helbertal, 2013). Can the analysis of FL(p, n) play a role in closing this gap?

It is not hard to see that optbs(k, 1) = k− 1 = Θ(k), and the proof of Lemma 5 implies
that optbs(k, 3) = Θ(k log k). What about optbs(k, 2)?
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Appendix A. Proof of Lemma 3

Pick i such that si 6= 0. We have

Pr(u · s = z mod p) = Pr(uisi = z −
∑
j 6=i

ujsj mod p)

= Pr(ui =

z −∑
j 6=i

ujsj

 s−1i mod p)

= 1/p,

completing the proof.

Appendix B. Proof of Lemma 4

Let i be one component such that si 6= ti. Let s′, t′ and u′ be the projections of s, t and u
onto the indices other than i.

Lemma 3 implies that s′ · u′ mod p is distributed uniformly on {0, ..., p − 1}. Thus,
after conditioning on the event that s ·u = z mod p, ui is uniform over {0, ..., p−1}, which
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implies

Pr(t · u = z mod p | s · u = z mod p)

= Pr(ui(ti − si) = (s′ − t′) · u′ mod p | s · u = z mod p)

= 1/p,

completing the proof.
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