Boosting the Area Under the ROC Curve

Philip M. Long Rocco A. Servedio
plong@google.com rocco@cs.columbia.edu
Abstract

We show that any weak ranker that can achieve an area und&QKkecurve
slightly better thari /2 (which can be achieved by random guessing) can be effi-
ciently boosted to achieve an area under the ROC curve abjtclose to 1. We
further show that this boosting can be performed even in tesgmce of indepen-
dent misclassification noise, given access to a noiseaai@veak ranker.

1 Introduction

Background. Machine learning is often used to identify members of a gielass from a list of
candidates. This can be formulated as a ranking problenreaxhe algorithm takes a input a list of
examples of members and non-members of the class, and sathuiction that can be used to rank
candidates. The goal is to have the top of the list enrichethfmbers of the class of interest.

ROC curves [12, 3] are often used to evaluate the quality ah&ing function. A point on an ROC
curve is obtained by cutting off the ranked list, and chegkiow many items above the cutoff are
members of the target class (“true positives”), and how namynot (“false positives”).

The AUC [1, 10, 3] (area under the ROC curve) is often used as a sumstetigtic. It is obtained
by rescaling the axes so the true positives and false pesitiary betweefi and1, and, as the name
implies, examining the area under the resulting curve.

The AUC measures the ability of a ranker to identify regions in featspace that are unusually

densely populated with members of a given class. A rankesuaceed according to this criterion

even if positive examples are less dense than negative égamerywhere, but, in order to succeed,
it must identify where the positive examples tend to be. T&hiis contrast with classification, where,

if Pry = 1|x] is less tharl /2 everywhere, just predicting= —1 everywhere would suffice.

Our Results. Itis not hard to see that aaUC of 1/2 can be achieved by random guessing (see [3]),
thus it is natural to define a “weak ranker” to be an algorithat tan achievd UC slightly above
1/2. We show that any weak ranker can be boosted to a strong rérekeachieve.UC arbitrarily
close to the best possible valuelof

We also consider the standard independent classificatitae maodel, in which the label of each
example is flipped with probability. We show that in this setting, givenrise-tolerantweak
ranker (that achieves nontrividlUC in the presence of noisy data as described above), we can
boost to a strong ranker that achievdsC at leastl — ¢, for anyn < 1/2 and anye > 0.

Related work. Freund, lyer, Schapire and Singer [4] introduced RankBauasich performs rank-
ing with more fine-grained control over preferences betwesars of items than we consider here.
They performed an analysis that implies a bound onAk&> of the boosted ranking function in
terms of a different measure of the quality of weak rankemst&€s and Mohri [2] theoretically ana-
lyzed the “typical” relationship between the error rate efassifier based on thresholding a scoring
function and theAUC obtained through the scoring function; they also pointetitioa close rela-
tionship between the loss function optimized by RankBoast he AUC. Rudin, Cortes, Mohri,
and Schapire [11] showed that, when each of two classes aadlgtjkely, the loss function op-
timized by AdaBoost coincides with the loss function of RBokst. Noise-tolerant boosting has
previously been studied for classification. Kalai and Seiw¢7] showed that, if data is corrupted

with noise at a rate, it is possible to boost the accuracy of any noise-toleraaiearner arbitrar-
ily close tol — n, and they showed that it is impossible to boost beybrd. In contrast, we show
that, in the presence of noise at a rate arbitrarily closk/fy the AUC can be boosted arbitrarily
close tol. Our noise tolerant boosting algorithm uses as a subrothimémartingale booster” for
classification of Long and Servedio [9].

Methods. The key observation is that a weak ranker can be used to fingbasided” weak classifier
(Lemma 4), which achieves accuracy slightly better thardoam guessing on both positive and
negative examples. Two-sided weak classifiers can be lbtstebtain accuracy arbitrarily close
to 1, also on both the positive examples and the negative exampleroof of this is implicit in the
analysis of [9]. Such a two-sided strong classifier is easiyn to lead ta UC close tol.

Why is it possible to boost past tidJC past the noise rate, when this is provably not possible for
classification? Known approaches to noise-tolerant bog$fi, 9] force the weak learner to provide
a two-sided weak hypothesis by balancing the distributtbasare constructed so that both classes
are equally likely. However, this balancing skews the @hstions so that it is no longer the case that
the event that an example is corrupted with noise is indegrraf the instance; randomization was
used to patch this up in [7, 9], and the necessary slack wgseallable if the desired accuracy was
coarser than the noise rate. (We note that the lower boundl[ffbis proved using a construction in
which the class probability of positive examples is lessitthee noise rate; the essence of that proof
is to show that in that situation it is impossible to balarte distribution given access to noisy
examples.) In contrast, having a weak ranker provides emtaygrage to yield a two-sided weak
classifier without needing any rebalancing.

Outline. Section 2 gives some definitions. In Section 3, we analyzstiwptheAUC when there

is no noise in an abstract model where the weak learner is giwdistribution and returns a weak
ranker, and sampling issues are abstracted away. In Séta consider boosting in the presence
of noise in a similarly abstract model. We address samptisgds in Section 5.

2 Preliminaries

Rankings and AUC. Throughout this work we leX be a domaing : X — {—1, 1} be a classifier,
andD be a probability distribution over labeled examplesc(z)). We say thaD is nontrivial (for

c) if D assigns nonzero probability to both positive and negatiaenples. We writeD™ to denote
the marginal distribution over positive examples dpd to denote the marginal distribution over
negative examples, € is a mixture of the distribution®* andD~.

As has been previously pointed out, we may view any fundtiolX — R as a ranking ofX. Note
that if h(z1) = h(x2) then the ranking does not order relative toxs. Given a ranking function
h: X — R, for each valu# € R there is a poinfay, 8s) on theROC curve of, whereqy is the
false positive rate andy is the true positive rate of the classifier obtained by thotihg / at 6:
ag =D [h(z) > 0] and By = Dt[h(x) > 6]. Every ROC curve contains the poir{ts 0) and
(1,1) corresponding td = co and—oo respectively.

Givenh : X — R andD, the AUC can be defined adAUC(h; D) = Prycp+ vep-[h(u) >
h(v)] + $Pruep+ vep-[h(u) = h(v)]. It is well known (see e.g. [2, 6]) that theUC as defined
above is equal to the area under the ROC curvéfor

Weak Rankers. Fix any distributionD. It is easy to see that any constant functiomchieves
AUC(h;D) = % and also that foX finite and= a random permutation of, the expected\UC

of h(n(+)) is 3 for any function’. This motivates the following definition:

Definition 1 A weak ranker with advantageis an algorithm that, given any nontrivial distribution
D, returns a functiorh : X — R thathasAUC(h; D) > 4 + .

In the rest of the paper we show how boosting algorithms wailty designed for classification can
be adapted to convert weak rankers into “strong” rankeed éibhieveAUC at leastl —€) in a range
of different settings.

3 From weak to strong AUC

The main result of this section is a simple proof that AiéC can be boosted. We achieve this in a
relatively straightforward way by using the standard Ada&algorithm for boosting classifiers.

As in previous work [9], to keep the focus on the main ideas Weuse an abstract model in which
the booster successively passes distributibasDs, ... to a weak ranker which returns ranking
functionshy, ho, When the original distributio® is uniform over a training set, as in the usual
analysis of AdaBoost, this is easy to do. In this model we prtbe following:

Theorem 2 There is an algorithm AUCBoost that, given access to a weakerawith advantage
as an oracle, for any nontrivial distributio®, outputs a ranking function witAUC at leastl — .

The AUCBoost algorithm makés = O(l"gi#) many calls to the weak ranker. T has finite
support of sizen, AUCBoost take® (mT logm) time.

As can be seen from the observation that it does not depenideorelative frequency of positive
and negative examples, tidJC requires a learner to perform well on both positive and negat
examples. When such a requirement is imposed on a basdfielasshas been calletvo-sided
weak learning The key to boosting thUC is the observation (Lemma 4 below) that a weak
ranker can be used to generate a two-sided weak learner.

Definition 3 A ~ two-sided weak learner is an algorithm that, given a nomatidistribution D,
outputs a hypothesisthat satisfies botlPr,cp+ [h(z) = 1] > 3 + v andPr,cp- [h(z) = —1] >
% + . We say that such al hastwo-sided advantage with respect taD.

Lemma 4 Let A be a weak ranking algorithm with advantage Then there is ay/4 two-sided
weak learnerd’ based onA that always returns classifiers with equal error rate on piesi and
negative examples.

Proof: Algorithm A’ first runsA to get a real-valued ranking functidn: X — R. Consider the
ROC curve corresponding fa Since theAUC is at least} + v, there must be some poifit, v) on
the curve such that > « + v. Recall that, by the definition of the ROC curve, this meansttiere
is a threshold such thatD* [h(z) > 6] > D~ [h(z) > 0] + . Thus, for the classifier obtained by

thresholdingh até, the class conditional error ratgs Lip+ [h(z) < 0] andp_ d:EfD*[h(a:) >0
1 1

satisfyp; +p_ <1 —+. Thisin turn means that either, < 5 —Jorp_ <35 — 3.

Suppose thagi_ < py, sothap_ < % — 3 (the other case can be handled symmetrically). Consider
the randomized classifigrthat behaves as follows: given input(a) if 2(z) < 6, it flips a biased
coin, and with probability > 0, predictsl, and with probabilityl — ¢, predicts—1, and (b) if
h(z) > 0, it predicts 1. Ley(z, r) be the output of; on inputz and with randomization and let

. & Pr cp- . [g(xz,7r) = 1] ande; o Pr,cp+ rlg(z,7) = —1]. We haver, = (1 — ()p4 and
€ = p_ +¢(1 —p_). Let us choos& so thate_ = ¢, ; that is, we choos€¢ = %. This
yields
P+
PR & S— 1)
T l4pr—p

For any fixed value of_ the RHS of (1) increases with, . Recalling that we have, +p_ < 1—~,
the maximum of (1) is achieved pt. = 1 —~—p_, in which case we have (definiragdﬁfe, =€y)
€= 1+(§1_7_);f’)*_p7 = (21_’]2;5: . The RHS of this expression is nonincreasingin and therefore
is maximized ap_ is 0, when it takes the valu§ — ﬁ < % — . This completes the proofl

Figure 1 gives an illustration of the proof of the previousitaa; since the-coordinate of (a) is at
leasty more than the:-coordinate and (b) lies closer to (a) thanto1), they-coordinate of (b) is
at leasty/2 more than the:-coordinate, which means that the advantage is at fgéist

We will also need the following simple lemma which shows thatassifier that is good on both the
positive and the negative examples, when viewed as a rafikiregion, achieves a goaiUC.

Figure 1: The curved line represents the
ROC curve for ranking functioth. The
. : ‘ ‘ : lower black dot (a) corresponds to the value
0 andis located gfp_, 1—p,). The straight
line connecting0, 0) and(1, 1), which cor-
. , responds to a completely random ranking,
true) is given for reference. The dashed line (cov-
positive o. | g ered by the solid line fob < x < .16)
rate represents the ROC curve for a rankér
— which agrees withh on thosex for which
s Aa) 1 h(z) > 6 but randomly ranks those for
which h(z) < 6. The upper black dot (b)
is at the point of intersection between the
ROC curve for/ and the liney = 1 —z; its
coordinates arée, 1 — €). The randomized
ol - . . | classifierg is equivalent to thresholdiny/
false positive rate with a valued’ corresponding to this point.

o8 - 4

0.2 -

Lemma5Leth : X — {-1,1} and suppose thaPr,cp+[h(z) = 1] = 1 — ¢4 and
Pr,cp-[h(z) = —1] = 1 — e_. Then we havd UC(h; D) = 1 — <5,

Proof: We have

er(l—e)+e_(1—¢€y) . €4 +e_

AUC(D) = (1 —ep)(1 —e-) + 5 2

Proof of Theorem 2: AUCBoost works by running AdaBoost G}Dﬂ—%D*. Inroundt, each copy

of AdaBoost passes its reweighted distributidnto the weak ranker, and then uses the process of
Lemma 4 to convert the resulting weak ranking function tosssifierh, with two-sided advantage
~/4. Sinceh; has two-sided advantagg4, no matter howD, decomposes into a mixture dif;“
andD;, it must be the case thBr(, , ep,[hi(z) # y] < 1 — 7/4.

The analysis of AdaBoost (see [5]) shows tiiat O (logg—lf)) rounds are sufficient folf to have

error rate at most under3D,. + $D_. Lemma 5 now gives that the classififii(z) is a ranking
function withAUC at leastl — e.

For the final assertion of the theorem, note that at each raoratder to find the value of that
definesh, the algorithm needs to minimize the sum of the error ratehembsitive and negative
examples. This can be done by sorting the examples usinggak ranking function (i® (m log m)
time steps) and processing the examples in the resultirag,degleping running counts of the number
of errors of each type. d

4 Boosting weak rankers in the presence of misclassificatiamoise

The noise model: independent misclassification noisd.he model ofindependent misclassifica-
tion noisehas been widely studied in computational learning theomythils framework there is a
noise rate; < 1/2, and each example (positive or negative) drawn from distioln D has its true
labelc(z) independently flipped with probability before it is given to the learner. We wrif@”? to
denote the resulting distribution over (noise-corruptabigled examplege,).

Boosting weak rankers in the presence of independent misdaification noise. We now show
how the AUC can be boosted arbitrarily close to 1 even if the data givehddooster is corrupted
with independent misclassification noise, using weak remit@at are able to tolerate independent
misclassification noise. We note that this is in contraghwitown results for boosting the accuracy
of binary classifiers in the presence of noise; Kalai and &#ov[7] show that no “black-box”
boosting algorithm can be guaranteed to boost the accuriaay arbitrary noise-tolerant weak
learner to accuracy — 7 in the presence of independent misclassification noisdetra

Figure 2: The branching program produced
by the boosting algorithm. Each nodg,
is labeled with a weak classifiét; ;; left
edges correspond to -1 and right edges to 1.

Ug,)T{ \Ugi \O o O/ 1>—<1)T/+1 \Ug“,)T-H

output -1 output 1

As in the previous section we begin by abstracting away sagndsues and using a model in which
the booster passes a distribution to a weak ranker. Sampings will be treated in Section 5.

Definition 6 A noise-tolerant weak ranker with advantagés an algorithm with the following
property: for any noise rate < 1/2, given a noisy distributio®”, the algorithm outputs a ranking
functionh : X — R such thatAUC(h; D) > 5 + 7.

Our algorithm for boosting thaUC in the presence of noise uses the Basic MartiBoost algorithm
(see Section 4 of [9]). This algorithm boosts any two-sidedkiearner to arbitrarily high accuracy
and works in a series of rounds. Before rourttie space of labeled examples is partitioned into a
series of binsBy ¢, ..., B:—1 +. (The original binBy ; consists of the entire space.) In thth round

the algorithm first constructs distributiof% ;, ..., D;_1 + by conditioning the original distribution

D on membership iMBy 4, ..., B:—1,+ respectively. It then calls a two-sided weak learhéimes
using each ofDy, ..., Di_1+, getting weak classifiers +, ..., hy_1 + respectively. Having done
this, it createg + 1 bins for the next round by assigning each elemeny) of B;; to B; 41 if
hii(z) = —1 and toB;11 41 otherwise. Training proceeds in this way for a given nunibef
rounds, which is an input parameter of the algorithm.

The output of Basic MartiBoost is a layered branching progdefined as follows. There is a node
v; ¢ foreach round <t <741 and each indeft < i < ¢ (that s, for each bin constructed during
training). An itemz is routed through the branching program the same way a ldleeEmplgz, y)
would have been routed during the training phase: it start®dev ;, and from each nods;, ; it
goes tov; 141 if h;(z) = —1, and towv; 41 ++1 Otherwise. When the item arrives at a terminal
node of the branching program in lay&r+ 1, it is at some node; ;. The prediction isl if

j > T/2andis—1if j < T/2;in other words, the prediction is according to the majovitye of
the weak classifiers that were encountered along the pathghrthe branching program that the
example followed. See Figure 3.

The following lemma is proved in [9]. (The crux of the prooftiee observation that positive (re-
spectively, negative) examples are routed through thechiag program according to a random
walk that is biased to the right (respectively, left); hettoename “martingale boosting.”)

Lemma 7 ([9]) Suppose that Basic MartiBoost is provided with a hypothesisvith two-sided ad-
vantagey w.r.t. D; ; at each node; ;. Then forT = O(log(1/¢)/~?), Basic MartiBoost constructs
a branching progranf such thatD*[H (z) = —1] < eandD~[H(z) = 1] < e.

We now describe our noise-toleraAlJC boosting algorithm, which we call Basic MartiRank.
Given access to a noise-tolerant weak rankevith advantagey, at each node, ; the Basic Marti-
Rank algorithm runs! and proceeds as described in Lemma 4 to obtain a weak clagsifieBasic
MartiRank runs Basic MartiBoost with = O(log(1/¢)/~v?) and simply uses the resulting classifier
H as its ranking function. The following theorem shows thasiBéartiRank is an effectiva UC
booster in the presence of independent misclassificatim®no

Theorem 8 Fix anyn < 1/2and anye > 0. Given access t®" and a noise-tolerant weak ranker
with advantagey, Basic MartiRank outputs a branching prograihsuch thatAUC(H; D) > 1 —e.

Proof: Fix any nodev; ; in the branching program. The crux of the proof is the follogvsimple
observation: for a labeled example, y), the route through the branching program that is taken

by (z,y) is determined completely by the predictions of the basesiflass, i.e. only byz, and

is unaffected by the value of. Consequently ifD; , denotes the original noiseless distributibn
conditioned on reaching ,, then the noisy distribution conditioned on reaching, i.e. (D), ;, is
simply D; , corrupted with independent misclassification noise (I&,,)". So each time the noise-
tolerant weak ranked is invoked at a node; ., it is indeed the case that the distribution that it is
given is an independent misclassification noise distrilutiConsequentlyl does construct weak
rankers withAUC at leastl /2 + -y, and the conversion of Lemma 4 yields weak classifiers thag ha
advantagey/4 with respect to the underlying distributid® ;. Given this, Lemma 7 implies that the
final classifierH has error at moston both positive and negative examples drawn from the axlgin
distributionD, and Lemma 5 then implies thaf, viewed a ranker, achievedJC at leastl — ¢. O

In[9], a more complex variant of Basic MartiBoost, calledidés Tolerant SMartiBoost, is presented
and is shown to boost any noise-tolerant weak learning gkgorto any accuracy less thdn— 7

in the presence of independent misclassification noiseomtrast, here we are using just the Basic
MartiBoost algorithm itself, and can achieve ah{yC valuel — ¢ even fore < 7.

5 Implementing MartiRank with a distribution oracle

In this section we analyze learning from random examplesmatly, we assume that the weak
ranker is given access to an oracle for the noisy distribuEld. We thus now view aoise-tolerant
weak ranker with advantage as an algorithmA with the following property: for any noise rate
n < 1/2, given access to an oracle ¥, the algorithm outputs a ranking functién: X — R
such thahUC(h; D) > 1 + 1.

We letm 4 denote the number of examples from each class that sufficé forconstruct a ranking
function as described above. In other wordsAifs provided with a sample of draws frof"
such that each class, positive and negative, has atrleagtoints in the sample with that true label,
then algorithmA outputs ay-advantage weak ranking function. (Note that for simplicite are
assuming here that the weak ranker always constructs a veedding function with the desired
advantage, i.e. we gloss over the usual confidence paratétés can be handled with an entirely
standard analysis.)

In order to achieve a computationally efficient algorithnihis setting we must change the Marti-
Rank algorithm somewhat; we call the new variant Samplingtixéak, or SMartiRank. We prove
that SMartiRank is computationally efficient, has modesat@ple complexity, and efficiently gen-
erates a high-accuracy final ranking function with respe¢ihé underlying distributio®.

Our approach follows the same general lines as [9] where acieoimplementation is presented
for the MartiBoost algorithm. The main challenge in [9] i thollowing: for each node; ; in the
branching program, the boosting algorithm considerecketineust simulate a balanced version of
the induced distributio®; ; which puts equal weight on positive and negative exampfesly a
tiny fraction of examples drawn fror® are (say) positive and reaet,, then it is very inefficient
to simulate this balanced distribution (and in a noisy sdenas discussed earlier, if the noise rate
is high relative to the frequency of the desired class thenay in fact be impossible to simulate
the balanced distribution). The solution in [9] is to “freéany such node and simply classify any
example that reaches it as negative; the analysis arguesitite only a tiny fraction of positive
examples reach such nodes, this freezing only mildly dexg#ite accuracy of the final hypothesis.

In the ranking scenario that we now consider, we do not needrstruct balanced distributions, but
we do need to obtain a non-negligible number of examples &aah class in order to run the weak
learner at a given node. So as in [9] we still freeze some ndugswith a twist: we now freeze
nodes which have the property that for some class labelt{p@sir negative), only a tiny fraction of
examples fronD with that class labeteach the node. With this criterion for freezing we can prove
that the final classifier constructed has high accuracy bottositive and negative examples, which
is what we need to achieve goddJC. We turn now to the details.

Given a nodev; ; and a bitb € {—1,1}, let p?, denoteD[z reachesy, ; andc(z) = b]. The
SMartiRank algorithm is like Basic MartiBoost but with thalbwing difference: for each nods ;

and each valug € {—1,1}, if

» _ € Dle(x) =1]

Pt = =T+ 1))

then the node; , is “frozen,” i.e. itis labeled with the bit — b and is established as a terminal node
with no outgoing edges. (If this condition holds for bothues ofb at a particular node; ; then the
node is frozen and either output value may be used as the)ldtn following theorem establishes
that if SMartiRank is given weak classifiers with two-sideldantage at each node that is not frozen,
it will construct a hypothesis with small error rate on botsjtive and negative examples:

Theorem 9 Suppose that the SMartiRank algorithm as described abqwevsded with a hypothe-
sish; ; that has two-sided advantagewith respect tD; , at each node; , that is not frozen. Then
for T = O(log(1/¢)/~?), the final branching program hypothesii that SMartiRank constructs
willhave DT [H(z) = —1] < eandD~ [H(z) =1] < ¢

Proof: We analyzeD ™ [h(x) = —1]; the other case is symmetric.

Given an unlabeled instance € X, we say thatr freezes at node; , if z's path through the
branching program causes it to terminate at a ngdevith t < 7'+ 1 (i.e. at a node; ; which was
frozen by SMartiRank). We havB|z freezes and(z) = 1] = 3, , D[z freezes ab; ; andc(z) =

1] <y, <R8Il < ¢ Dle(x) = 1]. Consequently we have

TT(T+1)
D[z freezeb = Dle fre;[zctz)aidl(]x)= 1] < % (3)
Naturally, D [h(z) = —1] = DH[(h(z) = —1) & (xfreezed + DH[(h(x) =

—1) & (= does not freezg. By (3), this is at most + D [(h(z) = —1) & (= does not freezg.
Arguments identical to those in the last two paragraphsefptioof of Theorem 3 in [9] show that
DF[(h(x) = —1) & (« does not freez¢ < 5, and we are done. O

We now describe how SMartiRank can be run given oracle atog3% and sketch the analysis of
the required sample complexity (some details are omittedue of space limits). For simplicity of

presentation we shall assume that the booster is given the;yggf min{Dc(z) = —1], D[e(x) =

1]}; we note if thatp is not givena priori, a standard “guess and halve” technique can be used
to efficiently obtain a value that is within a multiplicatifactor of two of p, which is easily seen

to suffice. We also make the standard assumption (see [7Th&]the noise ratg is known;

this assumption can similarly be removed by having the #lgor‘guess and check” the value to
sufficiently fine granularity. Also, the confidence can belyred using the standard appeal to the
union bound — details are omitted.

SMartiRank will replace (2) with a comparison of samplenasties of the two quantities. To allow
for the fact that they are just estimates, it will be more emwative, and freeze when the estimate of

pl,is at MOSt 77 times the estimate d[e(z) = b).

We first observe that for any distributidh and any bit, we havePr , ,).pn[y = b] =7+ (1 —

20)Pr 4 c(2))~plc(x) = b], which is equivalent td[c(z) = b] = %:;ﬂ]’”. Consequently, given

an empirical estimate @"[y = b] that is accurate to within an additi\ﬂew (which can easily
be obtained from(m) draws toD"), it is possible to estimat®[c(z) = b] to within an
additive+p/10, and thus to estimate the RHS of (2) to within an addi%. Now in order
to determine whether nods ; should be frozen, we must compare this estimate with a silyila

accurate estimate @f (arguments similar to those of, e.g., Section 6.3 of [9] camged to show
that it suffices to run the algorithm using these estimatdaeg). We have

p!, = Dlzreaches;,] Dlc(z) = b |z reaches;] = D"[z reaches;] - D; [c(z) = b]
D7 [y — bl —
= D"[xreaches;] - <M> |
, —

A standard analysis (see e.g. Chapter 5 of [8]) shows thagilmntity can be estimated to additive
accuracytT using poly1/7,1/(1 — 2n)) many calls taD" (briefly, if D[« reache®; ;] is less than

7(1—2n) then an estimate of 0 is good enough, while if it is greatem #{a — 2n)) then ar-accurate
estimate of the second multiplicand can be obtained L@W) draws fromD", since at
least ar(1 — 2n) fraction of draws will reachy, ;.) Thus for each; ;, we can determine whether

to freeze it in the execution of SMartiRank using p@y1/e, 1/p,1/(1 — 2n)) draws fromD".

For each of the nodes that are not frozen, we must run the-tales@mnt weak ranked using the
distributionth. As discussed at the beginning of this section, this reqtir@swve obtain a sample
from D}, containing at least:4 examples whose true label belongs to each class. The egpecte
number of draws fronD” that must be made in order to receive an example from a giasscl

is 1/p, and sincey; ; is not frozen, the expected number of draws fré¥h belonging to a given
class that must be made in order to simulate a draw fiinbelonging to that class 8(T?/e).
Thus,O(T%m /(ep)) many draws fronD" are required in order to run the weak learaeat any
particular node. Since there atdT?) many nodes overall, we have that all in @{T*m 4 /(ep))
many draws fronD" are required, in addition to the pdl¥,1/¢,1/p,1/(1 — 2n)) draws required

to identify which nodes to freeze. Recalling that= O(log(1/¢)/~?), all in all we have:

Theorem 10 Let D be a nontrivial distribution overX, p = min{D[c¢(z) = —1], D[e(x) = 1]},
andn < % Given access to an oracle f@" and a noise-tolerant weak rankefr with advantage

v, the SMartiRank algorithm makes - poly(z, =, ﬁ, -) calls toD”, and and with probability

1 — ¢ outputs a branching prograrl such thatAUC(h; D) > 1 —e.

Acknowledgement

We are very grateful to Naoki Abe for suggesting the probléimomsting the AUC.

References
[1] A. P. Bradley. Use of the area under the ROC curve in théuatimn of machine learning
algorithms.Pattern Recognition30:1145-1159, 1997.
[2] C. Cortes and M. Mohri. AUC optimization vs. error ratemmzation. InNIPS 20032003.

[3] T. Fawcett. ROC graphs: Notes and practical considematior researchers. Technical Report
HPL-2003-4, HP, 2003.

[4] Y. Freund, R. lyer, R. E. Schapire, and Y. Singer. An effitiboosting algorithm for combining
preferenceslournal of Machine Learning Researet(6):933-970, 2004.

[5] Y. Freund and R. Schapire. A decision-theoretic genextibn of on-line learning and an
application to boostingJournal of Computer and System Sciené&ég1):119-139, 1997.

[6] J. Hanley and B. McNeil. The meaning and use of the are@uadeceiver operating charac-
teristic (ROC) curveRadiology 143(1):29-36, 1982.

[7] A. Kalai and R. Servedio. Boosting in the presence of @ol®urnal of Computer & System
Sciences?1(3):266—290, 2005. Preliminary versiorRroc. STOC'03

[8] M. Kearns and U. Vazirani.An introduction to computational learning theorMIT Press,
Cambridge, MA, 1994.

[9] P. Long and R. Servedio. Martingale boosting. Rroceedings of the Eighteenth Annual
Conference on Computational Learning Theory (CQlpBEges 79—-94, 2005.

[10] F. Provost, T. Fawcett, and Ron Kohavi. The case agatmiracy estimation for comparing
induction algorithmsICML, 1998.

[11] C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margased ranking meets boosting in
the middle.COLT, 2005.

[12] J. A. Swets. Signal detection theory and ROC analysis in psychology aagnastics: Col-
lected papersLawrence Erlbaum Associates, 1995.

