
Attribute-efficient learning
of decision lists and linear threshold functions

under unconcentrated distributions

Philip M. Long
Google

Mountain View, CA
plong@google.com

Rocco A. Servedio
Department of Computer Science

Columbia University
New York, NY

rocco@cs.columbia.edu

Abstract

We consider the well-studied problem of learning decision lists using few exam-
ples when many irrelevant features are present. We show that smooth boosting al-
gorithms such as MadaBoost can efficiently learn decision lists of length

�
over �

boolean variables using poly � �������
	 ��� many examples provided that the marginal
distribution over the relevant variables is “not too concentrated” in an
�� -norm
sense. Using a recent result of Håstad, we extend the analysis to obtain a similar
(though quantitatively weaker) result for learning arbitrary linear threshold func-
tions with

�
nonzero coefficients. Experimental results indicate that the use of

a smooth boosting algorithm, which plays a crucial role in our analysis, has an
impact on the actual performance of the algorithm.

1 Introduction

A decision list is a Boolean function defined over � Boolean inputs of the following form:

if ��� then ��� else if ��� then ��������� else if ��� then ��� else ������� .
Here ��� � ����� � ��� are literals defined over the � Boolean variables and ��� � ����� � ������� are Boolean values.
Since the work of Rivest [24] decision lists have been widely studied in learning theory and machine
learning.

A question that has received much attention is whether it is possible to attribute-efficiently learn
decision lists, i.e. to learn decision lists of length

�
over � variables using only poly � � �!���"	 ��� many

examples. This question was first asked by Blum in 1990 [3] and has since been re-posed numerous
times [4, 5, 6, 29]; as we now briefly describe, a range of partial results have been obtained along
different lines.

Several authors [4, 29] have noted that Littlestone’s Winnow algorithm [17] can learn decision lists
of length

�
using #
$&% ��' ���"	 � examples in time #"$(% ��' � ���"	 � . Valiant [29] and Nevo and El-Yaniv

[21] sharpened the analysis of Winnow in the special case where the decision list has only a bounded
number of alternations in the sequence of output bits � � � ����� � � ����� � It is well known that the “halving
algorithm” (see [1, 2, 19]) can learn length-

�
decision lists using only)*� �����
	 ��� examples, but the

running time of the algorithm is � � � Klivans and Servedio [16] used polynomial threshold func-
tions together with Winnow to obtain a tradeoff between running time and the number of examples
required, by giving an algorithm that runs in time �,+$&% ��-/.102' and uses #3+$(% ��-/.10�' ���"	 � examples.

In this work we take a different approach by relaxing the requirement that the algorithm work under
any distribution on examples or in the mistake-bound model. This relaxation in fact allows us to han-
dle not just decision lists, but arbitrary linear threshold functions with

�
nonzero coefficients. (Recall

that a linear threshold function ��������� � �
	���
������ � �
	�� is a function � ��������� 	�� ��� ���� ��� � � � �! �
where � � � are real numbers and the sgn function outputs the "�� numerical sign of its argument.)

The approach and results. We will analyze a smooth boosting algorithm (see Section 2) together
with a weak learner that exhaustively considers all # � possible literals � � �$# � � as weak hypotheses.
The algorithm, which we call Algorithm % , is described in more detail in Section 6.

The algorithm’s performance can be bounded in terms of the
 � -norm of the distribution over exam-
ples. Recall that the
 � -norm of a distribution & over a finite set ' is ()&*(� �+� �,�.-�/�01& �2� � � � �432� �
The
 � norm can be used to evaluate the “spread” of a probability distribution: if the probability is
concentrated on a constant number of elements of the domain then the
�� norm is constant, whereas
if the probability mass is spread uniformly over a domain of size 5 then the
 � norm is ��6�7 5 .

Our main results are as follows. Let & be a distribution over ����� � �
	
� � Suppose the target function� has
�

relevant variables. Let &98$:�; denote the marginal distribution over ����� � �
	 � induced by the
relevant variables to � (i.e. if the relevant variables are � � - � ����� � � �=< , then the value that &!8>:�; puts
on an input �@? � � ����� � ? � � is A�B -�/
CED � � - �����F� � < �G? � �����4? �IH � Let J � be the uniform distribution over����� � ��	 � and suppose that KLK &!8>:�;4K�K � 6MK�K J � KLK � �ON . (Note that for any & we have N*PQ� , since J � has
minimal
 � -norm among all distributions over ����� � �
	 � �) Then we have:

Theorem 1 Suppose the target function is an arbitrary decision list in the setting described above.
Then given poly(

���"	 � � � R � N �����"	 �S) examples, Algorithm % runs in poly(� � N � � R �����
	 �S) time and with
probability �T�VU constructs a hypothesis W that is X -accurate with respect to & .

Theorem 2 Suppose the target function is an arbitrary linear threshold function in the setting de-
scribed above. Then given poly(

��� ���"	 � � # +$&% %LY 3 R '�Z ' �
���
	 �S) examples, Algorithm % runs in poly(� �
+$ % %LY 3 R '�Z!' � ���
	 �S) time and with probability �[�\U constructs a hypothesis W that is X -accurate with
respect to & .

Relation to Previous Work. Jackson and Craven [14] considered a similar approach of using
Boolean literals as weak hypotheses for a boosting algorithm (in their case, AdaBoost). Jack-
son and Craven proved that for any distribution over examples, the resulting algorithm requires
poly �2] �����
	 ��� examples to learn any weight-] linear threshold function, i.e. any function of
the form � 	�� � � ���� �^� � � � �_
� over Boolean variables where all weights � � are integers and� ��L� � K � � K^`a] (this clearly implies that there are at most] relevant variables). It is well known
[12, 18] that general decision lists of length

�
can only be expressed by linear threshold functions

of weight #
b % ��' , and thus the result of [14] does not give an attribute efficient learning algorithm for
decision lists.

More recently Servedio [27] considered essentially the same algorithm we analyze in this work
by specifically studying smooth boosting algorithms with the “best-single-variable” weak learner.
He considered a general linear threshold learning problem (with no assumption that there are few
relevant variables) and showed that if the distribution satisfies a margin condition then the algorithm
has some level of resilience to malicious noise. The analysis of this paper is different from that of
[27]; to the best of our knowledge ours is the first analysis in which the smoothness property of
boosting is exploited for attribute efficient learning.

2 Boosting and Smooth Boosting

Fix a target function �O�c����� � �
	��d
e����� � �
	 and a distribution & over ����� � �
	�� . A hypothesis
function W\�f����� � �
	 �
g�h��� � ��	 is a i -weak hypothesis for � with respect to & if j C D �^W H PQi��
We sometimes refer to j C D �^W H as the advantage of W with respect to � �
We remind the reader that a boosting algorithm is an algorithm which operates in a sequence of
stages and at each stage k maintains a distribution &ml over ����� � �
	�� � At stage k the boosting algo-
rithm is given a weak hypothesis W l for � with respect to & ; the boosting algorithm then uses this
to construct the next distribution & l ��� over ����� � �
	�� . After n such stages the boosting algorithm
constructs a final hypothesis W based on the weak hypotheses W � � ����� � Wpo that is guaranteed to have
high accuracy with respect to the initial distribution & . See [25] for more details.

Let & � � & � be two distributions. For � PQ� we say that & � is � -smooth with respect to & � if

for all ��� ����� � �
	 � � & � ��� �$6 & � ��� �T`����
Following [15], we say that a boosting algorithm � is ���2X � i � -smooth if for any initial distribution &
and any distribution &�l that is generated starting from & when � is used to boost to X -accuracy withi -weak hypotheses at each stage, & l is ���@X � i � -smooth w.r.t. & � It is known that there are algorithms
that are � -smooth for �1��� � � R � with no dependence on i , see e.g. [8]. For the rest of the paper �
will denote such a smooth boosting algorithm.

It is easy to see that every distribution & which is � R -smooth w.r.t. the uniform distribution J satisfies
(>& (� 6p(FJ (� `�� ��6�X�� On the other hand, there are distributions & that are highly non-smooth
relative to J but which still have (>&*(� 6p(FJ (� small. For instance, the distribution & over �h��� � �
	 �
which puts weight �� < .�Z on a single point and distributes the remaining weight uniformly on the other
# � ��� points is only # � 3�� -smooth (i.e. very non-smooth) but satisfies (>&*(� 6M(4J � (� �	� � ����� Thus
the
 � -norm condition we consider in this paper is a weaker condition than smoothness with respect
to the uniform distribution.

3 Total variation distance and
�� -norm of distributions

The total variation distance between two probability distributions &,� � & � over a finite set ' is
 o�� � ����������� 0 & � ���(� � & �
���(� � �� � -�/�0 K & � �����c� & �"����� K�� It is easy to see that the total
variation distance between any two distributions is at most 1, and equals 1 if and only if the supports
of the distributions are disjoint. The following is immediate:

Lemma 1 For any two distributions & � and & � over a finite domain ' , we have

 o���� & � � & � � ��T� � -�/�0���� � � & � �2� � � & �
�2� �>	 �

We can bound the total variation distance between a distribution & and the uniform distribution in
terms of the ratio ()&*(� 6p(FJ (� of the
 � -norms as follows:

Lemma 2 For any distribution & over a finite domain ' , if J is the uniform distribution over ' ,

we have

 o�� � & � J � ` �T�! " #$ " ZZ% " C " ZZ �

Proof: Let & � " C " Z " #$ " Z . Since KLK &*K�K �� �Gj -('*)�D + ����� H , we have j -('*)�D + ����� H �,& � KLK J K�K �� �.- Z 0 �By Markov’s inequality,

A B-('*) D & ����� P #/& � J*�2� � H �gA�B-('*) D & �2� � P #/& �
K ' K H ` ��6 # � (1)

By Lemma 1, we have

�T�
 o�� ��& � J �e� 0 - ���
� �I& ����� � J*��� �)	 P 0-�1 C % - '32�� - Z # % - '

��� � � & ��� � � J*�2� �>	

P 0-�1 C % - '32�� - Z # % - '
& ��� �
#4& � P �5 & � �

where the second inequality uses the fact that & P � (so & ��� �$6 #4& �76 & �����) and the third
inequality uses (1). Using the definition of & and solving for

 o�� � & � J � completes the proof.

4 Weak hypotheses for decision lists

Let � be any decision list that depends on
�

variables:

if ��� then output ��� else 89898 else if ��� then output ��� else output ������� (2)

where each � � is either “ ��� � �a��� ” or “ ��� � � ����� .”
The following folklore lemma can be proved by an easy induction (see e.g. [12, 26] for proofs of
essentially equivalent claims):

Lemma 3 The decision list � can be represented by a linear threshold function of the form � �������� 	�� ��� � � ��� 8 898 � � � � � �*
� where each � � � " # ��� � and is an even integer in the range D ��# � � # � H �
It is easy to see that for any fixed ��� � ����� � ��� as in the lemma, as �G� �2� � � ����� � ��� � varies over����� � ��	 � the linear form ���)��� � 8 898 � ������� will assume each odd integer value in the range D ��# � � # � H
exactly once. Now we can prove:

Lemma 4 Let � be any decision list of length
�

over the � Boolean variables ��� � ����� � � � � Let & be
any distribution over ����� � �
	�� � and let &!8$:�; denote the marginal distribution over ����� � �
	 � induced
by the

�
relevant variables of � � Suppose that

 o�� ��&�8>:�; � J � � ` � ��� � Then there is some weak

hypothesis W �V�I� � � �T��� � ����� � � � � �T� � � � � ���
	 which satisfies j C	��

� D �^W H P�� Z��� �
Proof: We first observe that by Lemma 3 and the well-known “discriminator lemma” of [23, 11],
under any distribution & some weak hypothesis W from � � � � �T� � � ����� � � � � �T� � � � � ���
	 must havej C D �^W H P �� < . This immediately establishes the lemma for all �*` %� < . Z , and thus we may suppose
w.l.o.g. that ���

%� < .�Z .
We may assume w.l.o.g. that � is the decision list (2), that is, that the first literal concerns � � , the
second concerns � � , and so on. Let
 ����� denote the linear form � � � ��� 89898 � � � � � � from Lemma 3,
so � ��� � � � 	�� �
 �����!��� If � is drawn uniformly from �h��� � �
	 � , then
��2� � is distributed uniformly
over the # � odd integers in the interval D ��# � �\ � # � �\ H , as ���>� � is uniform over " # � , ��� � � over" # ��� � , and so on.

Let � denote the set of those � � �h��� � ��	 � that satisfy K
 ��� �IK ` � % # � � Note that there are at most
� % # � � � elements in � , corresponding to
��2� � � "�� � "�� � ����� � " �/#����O��� , where � is the greatest
integer such that #��!�.� ` � % # � . Since ���

%� < . Z , certainly K � K ` � ��� % # � ` � � # � . We thus have
A B # < D K
 ����� K���� % # � H P �f���p6 # . It follows that A�B C ��

� D K
��2� � K ��� % # � H P�� � (for otherwise we would

have

 o���� &�8>:�; � J � �!�Q� ���), and consequently we have j C ��
"� D K
��2� �IK H P#� Z$ # � �

Now we follow the simple argument used to prove the “discriminator lemma” [23, 11]. We have

j C ��
"� D K
��2� � K H �.j C ��

� D � �����
 ��� � H �%� � j D � ��� � � �)H�� 8 898 � � � j D � ����� � ��H � �j D � ����� H P � �& # � � (3)

Recalling that each K � � K � # ��� � , it follows that some W � � � � � �T��� � ����� � � � � �T� � � � � ����	 must

satisfy j C	��

� D �^W H P � � Z$ # � �46 � # ��� � � 8 898 � #(' � K K ��� Since K K ` # � this is at least � Z�)� , and the proof
is complete.

5 Weak hypotheses for linear threshold functions

Now we consider the more general setting of arbitrary linear threshold functions. Though there are
additional technical complications the basic idea is as in the previous section.

We will use the following fact due to Håstad:

Fact 3 (Håstad) (see [28], Theorem 9) Let � � ����� � ��	 �
 �h��� � ��	 be any linear threshold func-
tion that depends on all

�
variables � � � ����� � � � � There is a representation � 	�� � � ���� � � � � � �O
�

for � which is such that (assuming the weights � � � ����� � � � are ordered by decreasing magnitude�E� K � ��K�PaK � ��K�P7898 8MPaK � �MK*�,+) we have K � � K�P ��.- % ����� ' for all / � # � ����� � � �
The main result of this section is the following lemma. The proof uses ideas from the proof of
Theorem 2 in [28].

Lemma 5 Let � � ����� � �
	��d
e����� � ��	 be any linear threshold function that depends on
�

vari-
ables. Let & be any distribution over �h��� � �
	�� � and let &�8>:�; denote the marginal distribution over����� � ��	 � induced by the

�
relevant variables of � � Suppose that

 o�� ��&�8>:�; � J � �1` � �0��� Then
there is some weak hypothesis W,� �I� � � �T��� � ����� � � � � �T� � � � � ����	 which satisfies j C ��

� D �^W H P
��6 � � � # +$&% �F3 � Z ' ���

Proof sketch: We may assume that � �2� ���.� 	�� �
 �����!� where
�������� � � � � � 8 898 � � � � � � with� � � ����� � � � as described in Fact 3.

Let � � � �)*� ��6�� � � �)*�!�F��6(� � � � �"��� � ���"	 � ��6�� �!��� . (We will specify � in more detail later.)

Suppose first that � P � � By a well-known result of Muroga et al. [20], every linear threshold
function � that depends on

�
variables can be represented using integer weights each of mag-

nitude # $(% ��� �	� ��' . Now the discriminator lemma [11] implies that for any distribution
 , for
some W � � ��� � �T� � � ����� � � � � �T� � � � � ���
	 we have j�� D �^W H P ��6"# $&% �
� ��� ��' � If � P �

and � �
)*�!�F��6(� � � � �"��� � ���"	 � ��6�� �!��� , we have

�3���"	 � � �) � ��6(� � � . Thus, in this case, j � D �^W H P ��6 #(+$�% �F3 � Z2' ,
so the lemma holds if � P � �
Thus we henceforth assume that � 6 � � It remains only to show that

j C	��
"� D K
��2� �IK H P ��6 � � # +$ % �43 � Z!' ��� (4)

once we have this, following (3) we get

j C	��
"� D K
��2� �IK H �Oj C	��

� D ��
 H � � � j D � ��� � � �)H�� 898 8 � � � j D � ����� � ��H �V �j D � ����� H P.��6 � � # +$ % �43 � Z�' � �
and now since each K � � K^`G� (and w.l.o.g. K �K ` �

) this implies that some W satisfies j C ��
"� D �^W H P
��6 � � � # +$ % �F3 � Z2' � as desired.

Similar to [28] we consider two cases (which are slightly different from the cases in [28]).

Case I: For all � `�/�` � we have � �� 6 � � �� � � � �� � � � � 6������ .
Let �a�+�

�
#�� � �� ��� ���^� ���� ��� � & 6�� ��� Recall the following version of Hoeffding’s bound: for any

+ �� � �"! � and any i,� + , we have A B -�/$# � �&% ��' < D K � 8�� KfPQic(� (H ` #�(�*)�ZF32� (where we write

(� (to denote + � ��L� ��� ��). This bound directly gives us that

A B-
/ # <
D K � � ���>� � ��� � 8 898 � � ��� �pK P,� H ` #�(� �$� - % $ 3 � '232� � � 5 � (5)

Moreover, the argument in [28] that establishes equation (4) of [28] also yields

A�B-�/ # <
D K � � � � � 898 8 � � � � � � K�` #�� H ` � 5 (6)

in our current setting. (The only change that needs to be made to the argument of [28] is adjusting
various constant factors in the definition of �). Equations (5) and (6) together yield A�B -�/ # < D K � � � ���898 8 � � � � � � K P.� H P ���#� � � Now as before, taken together with the

 o�� bound this yieldsA B C ��

� D K
��2� � K�P/� H P � � and hence we have j C ��

� D K
������ K H P0��� 6"# � Since ��� � � ��� and � � ��� P��6 �!� � � ����� � � ���&0 � by Fact 3, we have established (4) in Case I.

Case II: For some value 1G` � we have � �2 6 � � ���� 2 � �� � ` � � 6����3� . Let us fix any setting ?������� � ��	 2 � � of the variables � � � ����� � � 2 � ��� By an inequality due to Petrov [22] (see [28], Theorem
4) we have

A B-34 %656565 % - < / # <&7 4&8 - D K � � ? � � 898 8 � � 2 � � ? 2 � ��� � 2 � 2 � 898 8 � � � � � �T K ` � 2 H `
� � 2+ � ��L� 2 � �� `

� �
5 �

� 5 �

Thus for each ? �O�h��� � ��	 2 � � we have A B -�/ # < D K
��2� �IK ` � 2 K
� � ����� � 2 � � � ? � �����$? 2 � � H ` � % �
This immediately yields A B -
/ # < D K
��2� � K � � 2 H P � � � % , which in turn gives A B -
/
C	��
"� D K
 ��� �IK �
� 2 H P.9 �% and hence j C	��

� D K
 ����� K H P:9 ��; 4% by our usual arguments. Now (4) follows using Fact 3
and 1 ` � �

6 Putting it all together

Algorithm % works by running a � � � R � -smooth boosting-by-filtering algorithm; for concreteness
we use the MadaBoost algorithm of Domingo and Watanabe [8]. At the k -th stage of boosting,

when MadaBoost simulates the distribution &ml , the weak learning algorithm works as follows:
)*� � �	� � � � �	� % �F3 S � ') Z � many examples are drawn from the simulated distribution & l , and these examples
are used to obtain an empirical estimate of j C�� D �^W H for each W � � � � � �T� � � ����� � � � � �T� � � ��� � ��	 .
(Here i is an upper bound on the advantage j C�� D �^W H of the weak hypotheses used at each stage;
we discuss this more below.) The weak hypothesis used at this stage is the one with the highest
observed empirical estimate. The algorithm is run for n��)*� �R) Z � stages of boosting.

Consider any fixed stage k of the algorithm’s execution. As shown in [8], at most)*� � R � draws from
the original distribution & are required for MadaBoost to simulate a draw from the distribution & l .
(This is a direct consequence of the fact that MadaBoost is)*� � R � -smooth; the distribution & l is
simulated using rejection sampling from & �) Standard tail bounds show that if the best hypothesisW has j D �^W H Pai then with probability � � U � the hypothesis selected will have j D �^W H P i 6"# . In
[8] it is shown that if MadaBoost always has an

� � i � -accurate weak hypothesis at each stage, then
after at most n �)*� �R) Z � stages the algorithm will construct a hypothesis which has error at most

X . Thus it suffices to take U � �)*�2U�X � i � . The overall number of examples used by Algorithm % is

)*� � �	� � � � �	� % �F3 S � 'R Z)�� � .
Thus to establish Theorems 1 and 2, it remains only to show that for any initial distribution & with(>&!8$:�;F(�� 6p(FJ ��(��!�GN , the distributions & l that arise in the course of boosting are always such that
the best weak hypothesis W��d� � � � �T� � � ����� � � � � �T� � � ��� � ��	 has sufficiently large advantage.

Suppose � is a target function that depends on some set of
�

(out of �) variables. Consider
what happens if we run a � R -smooth boosting algorithm, where the initial distribution & satisfies
(>& 8$:�; (6M(4J � (� N � At each stage we will have & 8>:�;l �2� �!` � R 8�& 8$:�; ��� � for all � �.����� � �
	 � , and
consequently we will have

K�K & 8$: ;l KLK �� � 0-
/$# � �&% �	' < & 8$:�;l ��� � � ` �
X � 0-�/$# � �&% ��' < & 8>:�; �2� � � `

N �
X � 0-
/$# � �&% �	' < J � ����� � �

Thus, by Lemma 2 each distribution & l will satisfy

 o�� ��&�8>:�;l � J � � `Q�p� X � 6 � 5 N � ��� Now Lemmas 4

and 5 imply that in both cases (decision lists and LTFs) the best weak hypothesis W does indeed have
the required advantage.

7 Experiments

The smoothness property enabled the analysis of this paper. Is smoothness really helpful for learning
decision lists with respect to diffuse distributions? Is it critical?

This section is aimed at addressing these questions experimentally. We compared the accuracy of
the classifiers output by a number of smooth boosters from the literature with AdaBoost (which is
known to not be a smooth booster in general, see e.g. Section 4.2 of [7]) on synthetic data in which
the examples were distributed uniformly, and the class designations were determined by applying a
randomly generated decision list. The number of relevant variables was fixed at ��+ . The decision
list was determined by picking � � � ����� � ��� ' and ��� � ����� � ���2� from (2) independently uniformly at random
from among the possibilities.

We evaluated the following algorithms: (a) AdaBoost [9], (b) MadaBoost [8], (c) SmoothBoost [27],
and (d) a smooth booster proposed by Gavinsky [10]. Due to space constraints, we cannot describe
each of these in detail.1

Each booster was used to reweight the training data, and in each round, the literal which minimized
the weighted training error was chosen. Some of the algorithms choose the number of rounds of

1Very roughly speaking, AdaBoost reweights the data to assign more weight to examples that previously
chosen base classifiers have often classified incorrectly; it then outputs a weighted vote over the outputs of the
base classifiers, where each voting weight is determined as a function of how well its base classifier performed.
MadaBoost modifies AdaBoost to place a cap on the weight, prior to normalization. SmoothBoost [27] caps
the weight more aggressively as learning progresses, but also reweights the data and weighs the base classifiers
in a manner that does not depend on how well they performed. The form of the manner in which Gavinsky’s
booster updates weights is significantly different from AdaBoost, and reminiscent of [13, 15].

� � Ada Mada Gavinsky SB(0.05) SB(0.1) SB(0.2) SB(0.4)
100 100 0.086 0.077 0.088 0.071 0.067 0.077 0.089
200 100 0.052 0.045 0.050 0.067 0.047 0.047 0.051
500 100 0.022 0.018 0.024 0.056 0.031 0.025 0.031
1000 100 0.016 0.014 0.024 0.063 0.036 0.028 0.033
100 1000 0.123 0.119 0.116 0.093 0.101 0.117 0.128
200 1000 0.079 0.072 0.083 0.071 0.064 0.072 0.081
500 1000 0.045 0.039 0.045 0.050 0.040 0.040 0.044
1000 1000 0.033 0.026 0.035 0.048 0.038 0.032 0.036

Table 1: Average test set error rate

� � Ada Mada Gavinsky SB(0.05) SB(0.1) SB(0.2) SB(0.4)
100 100 13.6 8.8 11.7 3.9 6.0 7.5 9.1
200 100 19.8 13.1 12.5 4.1 6.9 9.4 9.9
500 100 32.2 20.7 15.2 5.0 9.1 11.5 12.2

1000 100 37.2 19.2 15.3 7.1 10.7 12.1 13.0
100 1000 13.3 7.7 26.8 3.7 5.3 6.1 7.4
200 1000 19.8 11.5 19.4 4.4 7.4 9.5 11.7
500 1000 28.1 16.7 16.2 4.9 8.6 10.9 11.5

1000 1000 36.7 20.1 14.7 7.2 11.0 12.1 13.3

Table 2: Average smoothness

boosting as a function of the desired accuracy; instead, we ran all algorithms for 100 rounds. All
boosters reweighted the data by normalizing some function that assigns weight to examples based
on how well previously chosen based classifiers are doing at classifying them correctly. The booster
proposed by Gavinsky might set all of these weights to zero: in such cases, it was terminated.

For each choice of the number of examples � and the number of features � , we repeated the fol-
lowing steps: (a) generate a random target, (b) generate � random examples, (c) split them into a
training set with #�6(� of the examples and a test set with the remaining ��6(� , (d) apply all the algo-
rithms on the training set, and (e) apply all the resulting classifiers on the test set. We repeated the
steps enough times so that the total size of the test sets was at least � +�+ + + ; that is, we repeated them� ��+ +�+ +h6 ��� times. The average test-set error is reported.

SmoothBoost [27] has two parameters, i and . In his analysis, ��i 6 � # � i � , so we used the same
setting. We tried his algorithm with i set to each of + � +�� , + �L� , + � # and + � 5 .
The test set error rates are tabulated in Table 1. MadaBoost always improved on the accuracy of Ad-
aBoost. The results are consistent with the possibility that AdaBoost learns decision lists attribute-
efficiently with respect to the uniform distribution; this motivates theoretical study of whether this
is true. One possible route is to prove that, for sources like this, AdaBoost is, with high probability,
a smooth boosting algorithm. The average smoothnesses are given in Table 2.

SmoothBoost [27] was seen to be fairly robust to the choice of i ; with a good choice it sometimes
performed the best. This motivates research into adaptive boosters along the lines of SmoothBoost.

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

[2] J. Barzdin and R. Freivald. On the prediction of general recursive functions. Soviet Mathematics Doklady,
13:1224–1228, 1972.

[3] A. Blum. Learning Boolean functions in an infinite attribute space. In Proceedings of the Twenty-Second
Annual Symposium on Theory of Computing, pages 64–72, 1990.

[4] A. Blum. On-line algorithms in machine learning. available at
http://www.cs.cmu.edu/˜avrim/Papers/pubs.html, 1996.

[5] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely or infinitely many irrele-
vant attributes. Journal of Computer and System Sciences, 50:32–40, 1995.

[6] A. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial
Intelligence, 97(1-2):245–271, 1997.

[7] N. Bshouty and D. Gavinsky. On boosting with optimal poly-bounded distributions. Journal of Machine
Learning Research, 3:483–506, 2002.

[8] C. Domingo and O. Watanabe. Madaboost: a modified version of adaboost. In Proceedings of the
Thirteenth Annual Conference on Computational Learning Theory, pages 180–189, 2000.

[9] Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

[10] Dmitry Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning. Journal of
Machine Learning Research, 4:101–117, 2003.

[11] A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G. Turan. Threshold circuits of bounded depth. Journal
of Computer and System Sciences, 46:129–154, 1993.

[12] S. Hampson and D. Volper. Linear function neurons: structure and training. Biological Cybernetics,
53:203–217, 1986.

[13] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of the Thirty-Sixth
Annual Symposium on Foundations of Computer Science, pages 538–545, 1995.

[14] J. Jackson and M. Craven. Learning sparse perceptrons. In NIPS 8, pages 654–660, 1996.

[15] A. Klivans and R. Servedio. Boosting and hard-core sets. Machine Learning, 53(3):217–238, 2003.
Preliminary version in Proc. FOCS’99.

[16] A. Klivans and R. Servedio. Toward attribute efficient learning of decision lists and parities. In Proceed-
ings of the 17th Annual Conference on Learning Theory,, pages 224–238, 2004.

[17] N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm.
Machine Learning, 2:285–318, 1988.

[18] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT Press, Cam-
bridge, MA, 1968.

[19] T. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226, 1982.

[20] S. Muroga, I. Toda, and S. Takasu. Theory of majority switching elements. J. Franklin Institute, 271:376–
418, 1961.

[21] Z. Nevo and R. El-Yaniv. On online learning of decision lists. Journal of Machine Learning Research,
3:271–301, 2002.

[22] V. V. Petrov. Limit theorems of probability theory. Oxford Science Publications, Oxford, England, 1995.

[23] G. Pisier. Remarques sur un resultat non publi’e de B. Maurey. Sem. d’Analyse Fonctionelle, 1(12):1980–
81, 1981.

[24] R. Rivest. Learning decision lists. Machine Learning, 2(3):229–246, 1987.

[25] R. Schapire. Theoretical views of boosting. In Proc. 10th ALT, pages 12–24, 1999.

[26] R. Servedio. On PAC learning using Winnow, Perceptron, and a Perceptron-like algorithm. In Proceedings
of the Twelfth Annual Conference on Computational Learning Theory, pages 296–307, 1999.

[27] R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research,
4:633–648, 2003. Preliminary version in Proc. COLT’01.

[28] R. Servedio. Every linear threshold function has a low-weight approximator. In Proceedings of the 21st
Conference on Computational Complexity (CCC), 2006.

[29] L. Valiant. Projection learning. Machine Learning, 37(2):115–130, 1999.

