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Abstract

We study the learnability of sums of independent integer random variables given a bound on the
size of the union of their supports. For A ⊂ Z+, a sum of independent random variables with col-
lective support A (called an A-sum in this paper) is a distribution S = X1 + · · · + XN where the
Xi’s are mutually independent (but not necessarily identically distributed) integer random variables with
∪isupp(Xi) ⊆ A.

We give two main algorithmic results for learning such distributions:

1. For the case |A| = 3, we give an algorithm for learning A-sums to accuracy ε that uses poly(1/ε)
samples and runs in time poly(1/ε), independent of N and of the elements of A.

2. For an arbitrary constant k ≥ 4, ifA = {a1, ..., ak} with 0 ≤ a1 < ... < ak, we give an algorithm
that uses poly(1/ε) · log log ak samples (independent of N ) and runs in time poly(1/ε, log ak).

We prove an essentially matching lower bound: if |A| = 4, then any algorithm must use

Ω(log log a4)

samples even for learning to constant accuracy. We also give similar-in-spirit (but quantitatively very
different) algorithmic results, and essentially matching lower bounds, for the case in which A is not
known to the learner.

Our learning algorithms employ new limit theorems which may be of independent interest. Our lower
bounds rely on equidistribution type results from number theory. Our algorithms and lower bounds to-
gether settle the question of how the sample complexity of learning sums of independent integer random
variables scales with the elements in the union of their supports, both in the known-support and unknown-
support settings. Finally, all our algorithms easily extend to the “semi-agnostic” learning model, in which
training data is generated from a distribution that is only cε-close to some A-sum for a constant c > 0.

∗Supported by a start-up grant from Northwestern University and NSF CCF-1814706.
†Supported by NSF grants CCF-1420349 and CCF-1563155.



1 Introduction

The theory of sums of independent random variables forms a rich strand of research in probability. Indeed,
many of the best-known and most influential results in probability theory are about such sums; prominent
examples include the weak and strong law of large numbers, a host of central limit theorems, and (the starting
point of) the theory of large deviations. Within computer science, the well-known “Chernoff-Hoeffding”
bounds — i.e., large deviation bounds for sums of independent random variables — are a ubiquitous tool of
great utility in many contexts. Not surprisingly, there are several books [GK54, Pet75, Pet95, PS00, Kle14,
BB85] devoted to the study of sums of independent random variables.

Given the central importance of sums of independent random variables both within probability theory
and for a host of applications, it is surprising that even very basic questions about learning these distributions
were not rigorously investigated until very recently. The problem of learning probability distributions from
independent samples has attracted a great deal of attention in theoretical computer science for almost two
decades (see [KMR+94, Das99, AK01, VW02, KMV10, MV10, BS10] and a host of more recent papers),
but most of this work has focused on other types of distributions such as mixtures of Gaussians, hidden
Markov models, etc. While sums of independent random variables may seem to be a very simple type of
distribution, as we shall see below the problem of learning such distributions turns out to be surprisingly
tricky.

Before proceeding further, let us recall the standard PAC-style model for learning distributions that
was essentially introduced in [KMR+94] and that we use in this work. In this model the unknown target
distribution X is assumed to belong to some class C of distributions. A learning algorithm has access to
i.i.d. samples from X, and must produce an efficiently samplable description of a hypothesis distribution H
such that with probability at least (say) 9/10, the total variation distance dTV(X,H) between X and H is
at most ε. (In the language of statistics, this task is usually referred to as density estimation, as opposed to
parametric estimation in which one seeks to approximately identify the parameters of the unknown distri-
bution X when C is a parametric class like Gaussians or mixtures of Gaussians.) In fact, all our positive
results hold for the more challenging semi-agnostic variant of this model, which is as above except that the
assumption that X ∈ C is weakened to the requirement dTV(X,X∗) ≤ cε for some constant c and some
X∗ ∈ C.

Learning sums of independent random variables: Formulating the problem. To motivate our choice of
learning problem it is useful to recall some relevant context. Recent years have witnessed many research
works in theoretical computer science studying the learnability and testability of discrete probability distri-
butions (see e.g. [DDS12a, DDS12b, DDO+13, RSS14, ADK15, AD15, Can15, LRSS15, CDGR16, Can16,
DKS16a, DKS16c, DDKT16]); our paper belongs to this line of research. A folklore result in this area is
that a simple brute-force algorithm can learn any distribution over an M -element set using Θ(M/ε2) sam-
ples, and that this is best possible if the distribution may be arbitrary. Thus it is of particular interest to learn
classes of distributions overM elements for which a sample complexity dramatically better than this “trivial
bound” (ideally scaling as logM , or even independent of M altogether) can be achieved.

This perspective on learning, along with a simple result which we now describe, strongly motivates
considering sums of random variables which have small collective support. Consider the following very
simple learning problem: Let {Xi}ni=1 be independent random variables where Xi is promised to be sup-
ported on the two-element set {0, i} but Pr[Xi = i] is unknown: what is the sample complexity of learning
X = X1 + · · · + XN? Even though each random variable Xi is “as simple as a non-trivial random vari-
able can be” — supported on just two values, one of which is zero — a straightforward lower bound given
in [DDS12b] shows that any algorithm for learning X even to constant accuracy must use Ω(N) samples,
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which is not much better than the trivial brute-force algorithm based on support size.
Given this lower bound, it is natural to restrict the learning problem by requiring the random variables

X1, . . . ,XN to have small collective support, i.e. the union supp(X1) ∪ · · · ∪ supp(XN ) of their support
sets is small. Inspired by this, Daskalakis et al. [DDS12b] studied the simplest non-trivial version of this
learning problem, in which each Xi is a Bernoulli random variable (so the union of all supports is simply
{0, 1}; note, though, that the Xi’s may have distinct and arbitrary biases). The main result of [DDS12b] is
that this class (known as Poisson Binomial Distributions) can be learned to error ε with poly(1/ε) samples
— so, perhaps unexpectedly, the complexity of learning this class is completely independent of N , the
number of summands. The proof in [DDS12b] relies on several sophisticated results from probability theory,
including a discrete central limit theorem from [CGS11] (proved using Stein’s method) and a “moment
matching” result due to Roos [Roo00]. (A subsequent sharpening of the [DDS12b] result in [DKS16b],
giving improved time and sample complexities, also employed sophisticated tools, namely Fourier analysis
and algebraic geometry.)

Motivated by this first success, there has been a surge of recent work which studies the learnability
of sums of richer classes of random variables. In particular, Daskalakis et al. [DDO+13] considered a
generalization of [DDS12b] in which each Xi is supported on the set {0, 1, . . . , k − 1}, and Daskalakis et
al. [DKT15] considered a vector-valued generalization in which each Xi is supported on the set {e1, . . . , ek},
the standard basis unit vectors in Rk. We will elaborate on these results shortly, but here we first high-
light a crucial feature shared by all these results; in all of [DDS12b, DDO+13, DKT15] the collective
support of the individual summands forms a “nice and simple” set (either {0, 1}, {0, 1, . . . , k − 1}, or
{e1, . . . , ek}). Indeed, the technical workhorses of all these results are various central limit theorems which
crucially exploit the simple structure of these collective support sets. (These central limit theorems have
since found applications in other settings, such as the design of algorithms for approximating equilib-
rium [DDKT16, DKT15, DKS16c, CDS17] as well as stochastic optimization [De18].)

In this paper we go beyond the setting in which the collective support of X1, . . . ,XN is a “nice” set,
by studying the learnability of X1 + · · · + XN where the collective support may be an arbitrary set of
non-negative integers. Two questions immediately suggest themselves:

1. How (if at all) does the sample complexity depend on the elements in the common support?

2. Does knowing the common support set help the learning algorithm — how does the complexity vary
depending on whether or not the learning algorithm knows the common support?

In this paper we give essentially complete answers to these questions. Intriguingly, the answers to these
questions emerge from the interface of probability theory and number theory: our algorithms rely on new
central limit theorems for sums of independent random variables which we establish, while our matching
lower bounds exploit delicate properties of continued fractions and sophisticated equidistribution results
from analytic number theory. The authors find it quite surprising that these two disparate sets of techniques
“meet up” to provide matching upper and lower bounds on sample complexity.

We now formalize the problem that we consider.

Our learning problem. Let X1, . . . ,XN be independent (but not necessarily identically distributed) ran-
dom variables. Let A = ∪isupp(Xi) be the union of their supports and assume w.l.o.g. that A =
{a1, ..., ak} for a1 < a2 < · · · < ak ∈ Z≥0. Let S be the sum of these independent random variables,
S = X1 + · · ·+ XN . We refer to such a random variable S as an A-sum.

We study the problem of learning a unknownA-sum S, given access to i.i.d. draws from S. A-sums gen-
eralize several classes of distributions which have recently been intensively studied in unsupervised learning
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[DDS12b, DDO+13, DKS16a], namely Poisson Binomial Distributions and “k-SIIRVs,” and are closely
related to other such distributions [DKS16c, DDKT16] (k-Poisson Multinomial Distributions). These pre-
viously studied classes of distributions have all been shown to have learning algorithms with sample com-
plexity poly(1/ε) for all constant k.

In contrast, in this paper we show that the picture is more varied for the sample complexity of learning
when A can be any finite set. Roughly speaking (we will give more details soon), two of our main results
are as follows:

• Any A-sum with |A| = 3 is learnable from poly(1/ε) samples independent of N and of the elements
of A. This is a significant (and perhaps unexpected) generalization of the efficient learnability of
Poisson Binomial Distributions, which corresponds to the case |A| = 2.

• No such guarantee is possible for |A| = 4: if N is large enough, there are infinitely many sets
A = {a1, a2, a3, a4} with 0 ≤ a1 < ... < a4 such that Ω(log log a4) examples are needed even to
learn to constant accuracy (for a small absolute constant).

Before presenting our results in more detail, to provide context we recall relevant previous work on learning
related distributions.

1.1 Previous work

A Poisson Binomial Distribution of order N , or PBDN , is a sum of N independent (not necessarily iden-
tical) Bernoulli random variables, i.e. an A-sum for A = {0, 1}. Efficient algorithms for learning PBDN

distributions were given in [DDS12c, DKS16b], which gave learning algorithms using poly(1/ε) samples
and poly(1/ε) runtime, independent of N .

Generalizing a PBDN distribution, a k-SIIRVN (Sum of Independent Integer Random Variables) is a
A-sum for A = {0, ..., k − 1}. Daskalakis et al. [DDO+13] (see also [DKS16a]) gave poly(k, 1/ε)-time
and sample algorithms for learning any k-SIIRVN distribution to accuracy ε, independent of N .

Finally, a different generalization of PBDs is provided by the class of (N, k)-Poisson Multinomial Distri-
butions, or k-PMDN distributions. Such a distribution is S = X1+· · ·+XN where the Xi’s are independent
(not necessarily identical) k-dimensional vector-valued random variables each supported on {e1, . . . , ek},
the standard basis unit vectors in Rk. Daskalakis et al. [DKT15] gave an algorithm that learns any unknown
k-PMDN using poly(k/ε) samples and running in time min{2O(kO(k))·logO(k)(1/ε), 2poly(k/ε)}; this result
was subsequently sharpened in [DKS16c, DDKT16].

Any A-sum with |A| = k has an associated underlying k-PMDN distribution: if A = {a1, ..., ak}, then
writing ā for the vector (a1, . . . , ak) ∈ Zk, an A-sum S′ is equivalent to ā · S where S is an k-PMDN ,
as making a draw from S′ is equivalent to making a draw from S and outputting its inner product with the
vector ā. However, this does not mean that the [DKT15] learning result for k-PMDN distributions implies a
corresponding learning result for {a1, ..., ak}-sums. If an A-sum learning algorithm were given draws from
the underlying k-PMDN , then of course it would be straightforward to run the [DKT15] algorithm, construct
a high-accuracy hypothesis distribution H over Rk, and output ā ·H as the hypothesis distribution for the
unknownA-sum. But when learning S′, the algorithm does not receive draws from the underlying k-PMDN

S; instead it only receives draws from ā · S. In fact, as we discuss below, this more limited access causes
a crucial qualitative difference in learnability, namely an inherent dependence on the ai’s in the necessary
sample complexity once k ≥ 4. (The challenge to the learner arising from the blending of the contributions
to a A-sum is roughly analogous to the challenge that arises in learning a DNF formula; if each positive
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example in a DNF learning problem were annotated with an identifier for a term that it satisfies, learning
would be trivial.)

1.2 The questions we consider and our algorithmic results.

As detailed above, previous work has extensively studied the learnability of PBDs, k-SIIRVs, and k-PMDs;
however, we believe that the current work is the first to study the learnability of general A-sums. A first
simple observation is that since any A-sum with |A| = 2 is a scaled and translated PBD, the results on
learning PBDs mentioned above easily imply that the sample complexity of learning any {a1, a2}-sum is
poly(1/ε), independent of the number of summands N and the values a1, a2. A second simple observation
is that any {a1, ..., ak}-sum with 0 ≤ a1 < ... < ak can be learned using poly(ak, 1/ε) samples, simply by
viewing it as an ak-SIIRVN . But this bound is in general quite unsatisfying – indeed, for large ak it could be
even larger than the trivial O(Nk/ε2) upper bound that holds since any A-sum with |A| = k is supported
on a set of size O(Nk).

Once k ≥ 3 there can be non-trivial additive structure present in the set of values a1, . . . , ak. This raises
a natural question: is k = 2 the only value for which A-sums are learnable from a number of samples that
is independent of the domain elements a1, . . . , ak? Perhaps surprisingly, our first main result is an efficient
algorithm which gives a negative answer. We show that for k = 3, the values of the ai’s don’t matter; we
do this by giving an efficient learning algorithm (even a semi-agnostic one) for learning {a1, a2, a3}-sums,
whose running time and sample complexity are completely independent of a1, a2 and a3:

Theorem 1 (Learning A-sums with |A| = 3, known support). There is an algorithm and a positive con-
stant c with the following properties: The algorithm is given N , an accuracy parameter ε > 0, distinct
values a1 < a2 < a3 ∈ Z≥0, and access to i.i.d. draws from an unknown distribution S∗ that has to-
tal variation distance at most cε from an {a1, a2, a3}-sum. The algorithm uses poly(1/ε) draws from S∗,
runs in poly(1/ε) time1, and with probability at least 9/10 outputs a concise representation of a hypothesis
distribution H such that dTV(H,S∗) ≤ ε.

We also give an algorithm for k ≥ 4. More precisely, we show:

Theorem 2 (Learning A-sums, known support). For any k ≥ 4, there is an algorithm and a constant c > 0
with the following properties: it is given N , an accuracy parameter ε > 0, distinct values a1 < · · · <
ak ∈ Z≥0, and access to i.i.d. draws from an unknown distribution S∗ that has total variation distance

at most cε from some {a1, . . . , ak}-sum. The algorithm runs in time (1/ε)2O(k2) · (log ak)
poly(k), uses

(1/ε)2O(k2) · log log ak samples, and with probability at least 9/10 outputs a concise representation of a
hypothesis distribution H such that dTV(H,S∗) ≤ ε.

In contrast with k = 3, our algorithm for general k ≥ 4 has a sample complexity which depends (albeit
doubly logarithmically) on ak. This is a doubly exponential improvement over the naive poly(ak) bound
which follows from previous ak-SIIRV learning algorithms [DDO+13, DKS16a].

Secondary algorithmic results: Learning with unknown support. We also give algorithms for a more
challenging unknown-support variant of the learning problem. In this variant the values a1, . . . , ak are not
provided to the learning algorithm, but instead only an upper bound amax ≥ ak is given. Interestingly, it
turns out that the unknown-support problem is significantly different from the known-support problem: as
explained below, in the unknown-support variant the dependence on amax kicks in at a smaller value of k

1Here and throughout we assume a unit-cost model for arithmetic operations +, ×, ÷.

4



than in the known-support variant, and this dependence is exponentially more severe than in the known-
support variant.

Using well-known results from hypothesis selection, it is straightforward to show that upper bounds
for the known-support case yield upper bounds in the unknown-support case, essentially at the cost of an
additional additiveO(k log amax)/ε2 term in the sample complexity. This immediately yields the following:

Theorem 3 (Learning with unknown support of size k). For any k ≥ 3, there is an algorithm and a positive
constant c with the following properties: The algorithm is given N , the value k, an accuracy parameter
ε > 0, an upper bound amax ∈ Z≥0, and access to i.i.d. draws from an unknown distribution S∗ that has
total variation distance at most cε from an A-sum for A = {a1, . . . , ak} ⊂ Z≥0 where maxi ai ≤ amax.

The algorithm uses O(k log amax)/ε2 + (1/ε)2O(k2) · log log amax draws from S∗, runs in poly((amax)k)·
(1/ε)2O(k2) · (log amax)poly(k) time, and with probability at least 9/10 outputs a concise representation of a
hypothesis distribution H such that dTV(H,S∗) ≤ ε.

Recall that a {a1, a2}-sum is simply a rescaled and translated PBDN distribution. Using known results
for learning PBDs, it is not hard to show that the k = 2 case is easy even with unknown support:

Theorem 4 (Learning with unknown support of size 2). There is an algorithm and a positive constant c
with the following properties: The algorithm is given N , an accuracy parameter ε > 0, an upper bound
amax ∈ Z+, and access to i.i.d. draws from an unknown distribution S∗ that has total variation distance at
most cε from an {a1, a2}-sum where 0 ≤ a1 < a2 ≤ amax. The algorithm uses poly(1/ε) draws from S∗,
runs in poly(1/ε) time, and with probability at least 9/10 outputs a concise representation of a hypothesis
distribution H such that dTV(H,S∗) ≤ ε.

1.3 Our lower bounds.

We establish sample complexity lower bounds for learning A-sums that essentially match the above algo-
rithmic results.

Known support. Our first lower bound deals with the known support setting. We give an Ω(log log a4)-
sample lower bound for the problem of learning an {a1, ..., a4}-sum for 0 ≤ a1 < a2 < a3 < a4. This
matches the dependence on ak of our poly(1/ε) · log log ak upper bound. More precisely, we show:

Theorem 5 (Lower Bound for Learning {a1, ..., a4}-sums, known support). LetA be any algorithm with the
following properties: algorithm A is given N , an accuracy parameter ε > 0, distinct values 0 ≤ a1 < a2 <
a3 < a4 ∈ Z, and access to i.i.d. draws from an unknown {a1, ..., a4}-sum S∗; and with probability at least
9/10 algorithm A outputs a hypothesis distribution S̃ such that dTV(S̃,S∗) ≤ ε. Then there are infinitely
many quadruples (a1, a2, a3, a4) such that for sufficiently large N , A must use Ω(log log a4) samples even
when run with ε set to a (suitably small) positive absolute constant.

This lower bound holds even though the target is exactly an {a1, ..., a4}-sum (i.e. it holds even in the
easier non-agnostic setting).

Since Theorem 1 gives a poly(1/ε) sample and runtime algorithm independent of the size of the ai’s
for k = 3, the lower bound of Theorem 5 establishes a phase transition between k = 3 and k = 4 for the
sample complexity of learning A-sums: when k = 3 the sample complexity is always independent of the
actual set {a1, a2, a3}, but for k = 4 it can grow as Ω(log log a4) (but no faster).

Unknown support. Our second lower bound deals with the unknown support setting. We give an Ω(log amax)-
sample lower bound for the problem of learning an {a1, a2, a3}-sum with unknown support 0 ≤ a1 < a2 <
a3 ≤ amax, matching the dependence on amax of our algorithm from Theorem 3. More precisely, we prove:
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Theorem 6 (Lower Bound for Learning {a1, a2, a3}-sums, unknown support). Let A be any algorithm with
the following properties: algorithm A is given N , an accuracy parameter ε > 0, a value 0 < amax ∈ Z,
and access to i.i.d. draws from an unknown {a1, a2, a3}-sum S∗ where 0 ≤ a1 < a2 < a3 ≤ amax; and A
outputs a hypothesis distribution S̃ which with probability at least 9/10 satisfies dTV(S̃,S∗) ≤ ε. Then for
sufficiently large N , A must use Ω(log amax) samples even when run with ε set to a (suitably small) positive
absolute constant.

Taken together with our algorithm from Theorem 4 for the case k = 2, Theorem 6 establishes another
phase transition, but now between k = 2 and k = 3, for the sample complexity of learning A-sums when A
is unknown. When |A| = 2 the sample complexity is always independent of the actual set, but for |A| = 3
and 0 ≤ a1 < ... < a3 it can grow as Ω(log a3) (but no faster).

In summary, taken together the algorithms and lower bounds of this paper essentially settle the question
of how the sample complexity of learning sums of independent integer random variables with sparse col-
lective support scales with the elements in the collective support, both in the known-support and unknown-
support settings.

Discussion. As described above, for an arbitrary set {a1, . . . , ak}, the sample complexity undergoes a
significant phase transition between k = 3 and k = 4 in the known-support case and between 2 and 3 in
the unknown-support case. In each setting the phase transition is a result of “number-theoretic phenomena”
(we explain this more later) which can only occur for the larger number and cannot occur for the smaller
number of support elements. We find it somewhat surprising that the sample complexities of these learning
problems are determined by number-theoretic properties of the support sets.

Organization. In the next section we give some of the key ideas that underlie our algorithms. See Section 3
for an overview of the ideas behind our lower bounds. Full proofs are given starting in Section 4.

2 Techniques for our algorithms

In this section we give an intuitive explanation of some of the ideas that underlie our algorithms and their
analysis. While our learning results are for the semi-agnostic model, for simplicity’s sake, we focus on the
case in which the target distribution S is actually an A-sum.

A first question, which must be addressed before studying the algorithmic (running time) complexity of
learning A-sums, is to understand the sample complexity of learning them. In fact, in a number of recent
works on learning various kinds of of “structured” distributions, just understanding the sample complexity
of the learning problem is a major goal that requires significant work [DDS12c, WY12, DDO+13, DDS14,
DKT15].

In many of the above-mentioned papers, an upper bound on both sample complexity and algorithmic
complexity is obtained via a structural characterization of the distributions to be learned; our work follows
a similar conceptual paradigm. To give a sense of the kind of structural characterization that can be helpful
for learning, we recall the characterization of SIIRVN distributions that was obtained in [DDO+13] (which
is the one most closely related to our work). The main result of [DDO+13] shows that if S is any k-SIIRVN

distribution, then at least one of the following holds:

1. S is ε-close to being supported on poly(k/ε) many integers;

2. S is ε-close to a distribution c · Z + Y, where 1 ≤ c ≤ k − 1, Z is a discretized Gaussian, Y is a
distribution supported on {0, . . . , c− 1}, and Y,Z are mutually independent.
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In other words, [DDO+13] shows that a k-SIIRVN distribution is either close to sparse (supported on
poly(k/ε) integers), or close to a c-scaled discretized Gaussian convolved with a sparse component sup-
ported on {0, . . . , c− 1}. This leads naturally to an efficient learning algorithm that handles Case (1) above
“by brute-force” and handles Case (2) by learning Y and Z separately (handling Y “by brute force” and
handling Z by estimating its mean and variance).

In a similar spirit, in this work we seek a more general characterization of A-sums. It turns out, though,
that even when |A| = 3, A-sums can behave in significantly more complicated ways than the k-SIIRVN

distributions discussed above.
To be more concrete, let S be a {a1, a2, a3}-sum with 0 ≤ a1 < a2 < a3. By considering a few simple

examples it is easy to see that there are at least four distinct possibilities for “what S is like” at a coarse
level:

• Example #1: One possibility is that S is essentially sparse, with almost all of its probability mass
concentrated on a small number of outcomes (we say that such an S has “small essential support”).

• Example #2: Another possibility is that S “looks like” a discretized Gaussian scaled by |ai − aj | for
some 1 ≤ i < j ≤ 3 (this would be the case, for example, if S =

∑N
i=1 Xi where each Xi is uniform

over {a1, a2}).

• Example #3: A third possibility is that S “looks like” a discretized Gaussian with no scaling (the
analysis of [DDO+13] shows that this is what happens if, for example, N is large and each Xi is
uniform over {a1 = 6, a2 = 10, a3 = 15}, since gcd(6, 10, 15) = 1).

• Example #4: Finally, yet another possibility arises if, say, a3 is very large (say a3 ≈ N2) while a2, a1

are very small (sayO(1)), and X1, . . . ,XN/2 are each uniform over {a1, a3} while XN/2+1, . . . ,XN

are each supported on {a1, a2} and
∑N

i=N/2+1 Xi has very small essential support. In this case, for
large N , S would (at a coarse scale) “look like” a discretized Gaussian scaled by a3 − a1 ≈ N2, but
zooming in, locally each “point” in the support of this discretized Gaussian would actually be a copy
of the small-essential-support distribution

∑N
i=N/2+1 Xi.

Given these possibilities for how S might behave, it should not be surprising that our actual analysis
for the case |A| = 3 (given in Section 9) involves four cases (and the above four examples land in the
four distinct cases). The overall learning algorithm “guesses” which case the target distribution belongs to
and runs a different algorithm for each one; the guessing step is ultimately eliminated using the standard
tool of hypothesis testing from statistics. We stress that while the algorithms for the various cases differ in
some details, there are many common elements across their analyses, and the well known kernel method for
density estimation provides the key underlying core learning routine that is used in all the different cases.

In the following intuitive explanation we first consider the case of A-sums for general finite |A|, and
later explain how we sharpen the algorithm and analysis in the case |A| = 3 to obtain our stronger results
for that case. Our discussion below highlights a new structural result (roughly speaking, a new limit theorem
that exploits both “long-range” and “short-range” shift-invariance) that plays a crucial role in our algorithms.

2.1 Learning A-sums with |A| = k

For clarity of exposition in this intuitive overview we make some simplifying assumptions. First, we make
the assumption that the A-sum S that is to be learned has 0 as one value in its k-element support, i.e. we
assume that S = X1 + . . . + XN where the support of each Xi is contained in the set {0, a1, . . . , ak−1}.
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In fact, we additionally assume that each Xi is 0-moded, meaning that Pr[Xi = 0] ≥ Pr[Xi = aj ] for
all i ∈ [N ] and all j ∈ [k − 1]. (Getting rid of this assumption in our actual analysis requires us to work
with zero-moded variants of the Xi distributions that we denote X′i, supported on O(k2) values that can be
positive or negative, but we ignore this for the sake of our intuitive explanation here.) For j ∈ [k − 1] we
define

γj :=

N∑
i=1

Pr[Xi = aj ],

which can be thought of as the “weight” that X1, . . . ,XN collectively put on the outcome aj .

A useful tool: hypothesis testing. To explain our approach it is helpful to recall the notion of hypothesis
testing in the context of distribution learning [DL01]. Informally, given T candidate hypothesis distributions,
one of which is ε-close to the target distribution S, a hypothesis testing algorithm uses O(ε−2 · log T ) draws
from S, runs in poly(T, 1/ε) time, and with high probability identifies a candidate distribution which is
O(ε)-close to S. We use this tool in a few different ways. Sometimes we will consider algorithms that
“guess” certain parameters from a “small” (size-T ) space of possibilities; hypothesis testing allows us to
assume that such algorithms guess the right parameters, at the cost of increasing the sample complexity and
running time by only small factors. In other settings we will show via a case analysis that one of several
different learning algorithms will succeed; hypothesis testing yields a combined algorithm that learns no
matter which case the target distribution falls into. (This tool has been used in many recent works on
distribution learning, see e.g. [DDS12c, DDS15, DDO+13].)

Our analysis. Let t1 = Ok,ε(1) � t2 = Ok,ε(1) � · · · � tk−1 = Ok,ε(1) be fixed values (the exact
values are not important here). Let us reorder a1, . . . , ak−1 so that the weights γ1 ≤ · · · ≤ γk−1 are sorted
in non-decreasing order. An easy special case for us (corresponding to Section 8.1) is that each γj ≤ tj . If
this is the case, then S has small “essential support”: in a draw from S = X1 + · · · + XN , with very high
probability for each j ∈ [k − 1] the number of Xi that take value aj is at most poly(tk−1), so w.v.h.p. a
draw from S takes one of at most poly(tk−1)k values. In such a case it is not difficult to learn S using
poly((tk−1)k, 1/ε) = Ok,ε(1) samples (see Fact 24). We henceforth may assume that some γj > tj .

For ease of understanding it is helpful to first suppose that every j ∈ [k− 1] has γj > tj , and to base our
understanding of the general case (that some j ∈ [k − 1] has γj > tj) off of how this case is handled; we
note that this special case is the setting for the structural results of Section 7. (It should be noted, though,
that our actual analysis of the main learning algorithm given in Section 8.2 does not distinguish this special
case.) So let us suppose that for all j ∈ [k − 1] we have γj > tj . To analyze the target distribution S in this
case, we consider a multinomial distribution M = Y1 + · · · + YN defined by independent vector-valued
random variables Yi, supported on 0, e1, . . . , ek−1 ∈ Zk−1, such that for each i ∈ [N ] and j ∈ [k − 1] we
have Pr[Yi = ej ] = Pr[Xi = aj ]. Note that for the multinomial distribution M defined in this way we
have (a1, . . . , ak−1) ·M = S.

Using the fact that each γj is “large” (at least tj), recent results from [DDKT16] imply that the multi-
nomial distribution M is close to a (k − 1)-dimensional discretized Gaussian whose covariance matrix has
all eigenvalues large (working with zero-moded distributions is crucial to obtain this intermediate result).
In turn, such a discretized multidimensional Gaussian can be shown to be close to a vector-valued random
variable in which each marginal (coordinate) is a (±1)-weighted sum of independent large-variance Poisson
Binomial Distributions. It follows that S = (a1, . . . , ak−1) ·M is close to a a weighted sum of k− 1 signed
PBDs. 2 A distribution S̃ is a weighted sum of k − 1 signed PBDs if S̃ = a1 · S̃1 + · · · + ak−1 · S̃k−1

2This is a simplification of what the actual analysis establishes, but it gets across the key ideas.
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where S̃1, . . . , S̃k−1 are independent signed PBDs; in turn, a signed PBD is a sum of independent random
variables each of which is either supported on {0, 1} or on {0,−1}. The S̃ that S is close to further has the
property that each S̃i has “large” variance (large compared with 1/ε).

Given the above analysis, to complete the argument in this case that each γj > tj we need a way to
learn a weighted sum of signed PBDs S̃ = a1 · S̃1 + · · · + ak−1 · S̃k−1 where each S̃j has large variance.
This is done with the aid of a new limit theorem, Lemma 40, that we establish for distributions of this form.
We discuss (a simplified version of) this limit theorem in Section 2.3; here, omitting many details, let us
explain what this new limit theorem says in our setting and how it is useful for learning. Suppose w.l.o.g.
that Var[ak−1 · S̃k−1] contributes at least a 1

k−1 fraction of the total variance of S̃. Let MIX denote the set of
those j ∈ {1, . . . , k − 2} such that Var[S̃j ] is large compared with ak−1, and let MIX′ = MIX ∪ {k − 1}.
The new limit theorem implies that the sum

∑
j∈MIX′ aj · S̃j “mixes,” meaning that it is very close (in

dTV) to a single scaled PBD aMIX′ · S̃MIX′ where aMIX′ = gcd{aj : j ∈ MIX′}. (The proof of the limit
theorem involves a generalization of the notion of shift-invariance from probability theory [BX99] and a
coupling-based method. We elaborate on the ideas behind the limit theorem in Section 2.3.)

Given this structural result, it is enough to be able to learn a distribution of the form

T := a1 · S̃1 + · · ·+ a` · S̃` + aMIX′ · S̃MIX′

for which we now know that aMIX′ · S̃MIX′ has at least 1
`+1 of the total variance, and each S̃j for j ∈ [`] has

Var[S̃j ] which is “not too large” compared with ak−1 (but large compared with 1/ε). We show how to learn
such a distribution using Ok,ε(1) · log log ak−1 samples (this is where the log log dependence in our overall
algorithm comes from). This is done, intuitively, by guessing various parameters that essentially define T,
specifically the variances Var[S̃1], . . . ,Var[S̃`]. Since each of these variances is roughly at most ak−1

(crucially, the limit theorem allowed us to get rid of the S̃j’s that had larger variance), via multiplicative
gridding there are Oε,k(1) · log ak−1 possible values for each candidate variance, and via our hypothesis
testing procedure this leads to an Oε,k(1) · log log ak−1 number of samples that are used to learn.

We now turn to the general case, that some j ∈ [k − 1] has γj > tj . Suppose w.l.o.g. that γ1 ≤
t1, . . . γ`−1 ≤ t`−1 and γ` > t` (intuitively, think of γ1, . . . , γ`−1 as “small” and γ`, . . . , γk−1 as “large”).
Via an analysis (see Lemma 45) akin to the “Light-Heavy Experiment” analysis of [DDO+13], we show
that in this case the distribution S is close to a distribution S̃ with the following structure: S̃ is a mixture
of at most poly(t`−1)k−1 many distributions each of which is a different shift of a single distribution, call
it Sheavy, that falls into the special case analyzed above: all of the relevant parameters γ`, . . . , γk−1 are
large (at least t`). Intuitively, having at most poly(t`−1)k−1 many components in the mixture corresponds
to having γ1, . . . , γ`−1 < t`−1 and ` ≤ k−1, and having each component be a shift of the same distribution
Sheavy follows from the fact that there is a “large gap” between γ`−1 and γ`.

Thus in this general case, the learning task essentially boils down to learning a distribution that is (close
to) a mixture of translated copies of a distribution of the form T given above. Learning such a mixture of
translates is a problem that is well suited to the “kernel method” for density estimation. This method has
been well studied in classical density estimation, especially for continuous probability densities (see e.g.
[DL01]), but results of the exact type that we need did not seem to previously be present in the literature.
(We believe that ours is the first work that applies kernel methods to learn sums of independent random
variables.)

In Section 5 we develop tools for multidimensional kernel based learning that suit our context. At its
core, the kernel method approach that we develop allows us to do the following: Given a mixture of r
translates of T and constant-factor approximations to γ`, . . . , γk−1, the kernel method allows us to learn this
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mixture to error O(ε) using only poly(1/ε`, r) samples. Further, this algorithm is robust in the sense that
the same guarantee holds even if the target distribution is only O(ε) close to having this structure (this is
crucial for us). Theorem 48 in Section 8 combines this tool with the ideas described above for learning a
T-type distribution, and thereby establishes our general learning result for A-sums with |A| ≥ 4.

2.2 The case |A| = 3

In this subsection we build on the discussion in the previous subsection, specializing to k = |A| = 3, and
explain the high-level ideas of how we are able to learn with sample complexity poly(1/ε) independent of
a1, a2, a3.

For technical reasons (related to zero-moded distributions) there are three relevant parameters t1 �
t2 � t3 = Oε(1) in the k = 3 case. The easy special case that each γj ≤ tj is handled as discussed earlier
(small essential support). As in the previous subsection, let ` ∈ [3] be the least value such that γ` > t`.

In all the cases ` = 1, 2, 3 the analysis proceeds by considering the Light-Heavy-Experiment as dis-
cussed in the preceding subsection, i.e. by approximating the target distribution S by a mixture S̃ of shifts
of the same distribution Sheavy. When ` = 3, the “heavy” component Sheavy is simply a distribution of the
form q3 · S3 where S3 is a signed PBD. Crucially, while learning the distribution T in the previous sub-
section involved guessing certain variances (which could be as large as ak, leading to log ak many possible
outcomes of guesses and log log ak sample complexity), in the current setting the extremely simple structure
of Sheavy = q3 · S3 obviates the need to make log a3 many guesses. Instead, as we discuss in Section 9.2,
its variance can be approximated in a simple direct way by sampling just two points from T and taking
their difference; this easily gives a constant-factor approximation to the variance of S3 with non-negligible
probability. This success probability can be boosted by repeating this experiment several times (but the
number of times does not depend on the ai values.) We thus can use the kernel-based learning approach in
a sample-efficient way, without any dependence on a1, a2, a3 in the sample complexity.

For clarity of exposition, in the remaining intuitive discussion (of the ` = 1, 2 cases) we only consider
a special case: we assume that S = a1 · S1 + a2 · S2 where both S1 and S2 are large-variance PBDs (so
each random variable Xi is either supported on {0, a1} or on {0, a2}, but not on all three values 0, a1, a2).
We further assume, clearly without loss of generality, that gcd(a1, a2) = 1. (Indeed, our analysis essentially
proceeds by reducing the ` = 1, 2 case to this significantly simpler scenario, so this is a fairly accurate
rendition of the true case.) Writing S1 = X1 + . . .+ XN1 and S2 = Y1 + . . .+ YN2 , by zero-modedness
we have that Pr[Xi = 0] ≥ 1

2 and Pr[Yi = 0] ≥ 1
2 for all i, so Var[Sj ] = Θ(1) · γj for j = 1, 2.

We assume w.l.o.g. in what follows that a2
1 · γ1 ≥ a2

2 · γ2, so Var[S], which we henceforth denote σ2, is
Θ(1) · a2

1 · γ1.
We now branch into three separate possibilities depending on the relative sizes of γ2 and a2

1. Before
detailing these possibilities we observe that using the fact that γ1 and γ2 are both large, it can be shown that
if we sample two points s(1) and s(2) from S, then with constant probability the value |s

(1)−s(2)|
a1

provides a
constant-factor approximation to γ1.

First possibility: γ2 < ε2 · a2
1. The algorithm samples two more points s(3) and s(4) from the distribution

S. The crucial idea is that with constant probability these two points can be used to obtain a constant-factor
approximation to γ2; we now explain how this is done. For j ∈ {3, 4}, let s(j) = a1 · s(j)

1 + a2 · s(j)
2 where

s
(j)
1 ∼ S1 and s(j)

2 ∼ S2, and consider the quantity s(3) − s(4). Since γ2 is so small relative to a1, the
“sampling noise” from a1 · s(3)

1 − a1 · s(4)
1 is likely to overwhelm the difference a2 · s(3)

2 − a2 · s(4)
2 at a

“macroscopic” level. The key idea to deal with this is to analyze the outcomes modulo a1. In the modular
setting, because Var[S2] = Θ(1)·γ2 � a2

1, one can show that with constant probability |(a−1
2 ·(s

(3)
2 −s

(4)
2 ))
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mod a1| is a constant-factor approximation to γ2. (Note that as a1 and a2 are coprime, the operation a−1
2

is well defined modulo a1.) A constant-factor approximation to γ2 can be used together with the constant-
factor approximation to γ1 to employ the aforementioned “kernel method” based algorithm to learn the
target distribution S. The fact that here we can use only two samples (as opposed to log log a1 samples)
to estimate γ2 is really the crux of why for the k = 3 case, the sample complexity is independent of a1.
(Indeed, we remark that our analysis of the lower bound given by Theorem 5 takes place in the modular
setting and this “mod a1” perspective is crucial for constructing the lower bound examples in that proof.)

Second possibility: a2
1/ε

2 > γ2 > ε2 · a2
1. Here, by multiplicative gridding we can create a list of

O(log(1/ε)) guesses such that at least one of them is a constant-factor approximation to γ2. Again, we
use the kernel method and the approximations to γ1 and γ2 to learn S.

Third possibility: The last possibility is that γ2 ≥ a2
1/ε

2. In this case, we show that S is in fact ε-close
to the discretized Gaussian (with no scaling; recall that gcd(a1, a2) = 1) that has the appropriate mean and
variance. Given this structural fact, it is easy to learn S by just estimating the mean and the variance and
outputting the corresponding discretized Gaussian. This structural fact follows from our new limit theorem,
Lemma 40, mentioned earlier; we conclude this section with a discussion of this new limit theorem.

2.3 Lemma 40 and limit theorems.

Here is a simplified version of our new limit theorem, Lemma 40, specialized to the case D = 2:

Simplified version of Lemma 40. Let S = r1 · S1 + r2 · S2 where S1,S2 are independent signed PBDs
and r1, r2 are nonzero integers such that gcd(r1, r2) = 1, Var[r1 · S1] ≥ Var[r2 · S2], and Var[S2] ≥
max{ 1

ε8
, r1ε }. Then S is O(ε)-close in total variation distance to a signed PBD S′ (and hence to a signed

discretized Gaussian) with Var[S′] = Var[S].

If a distribution S is close to a discretized Gaussian in Kolmogorov distance and is 1/σ-shift invariant
(i.e. dTV(S,S + 1) ≤ 1/σ), then S is close to a discretized Gaussian in total variation distance [R0̈7,
Bar15]. Gopalan et al. [GMRZ11] used a coupling based argument to establish a similar central limit
theorem to obtain pseudorandom generators for certain space bounded branching programs. Unfortunately,
in the setting of the lemma stated above, it is not immediately clear why S should have 1/σ-shift invariance.
To deal with this, we give a novel analysis exploiting shift-invariance at multiple different scales. Roughly
speaking, because of the r1 · S1 component of S, it can be shown that dTV(S,S + r1) = 1/

√
Var[S1],

i.e. S has good “shift-invariance at the scale of r1”; by the triangle inequality S is also not affected much
if we shift by a small integer multiple of r1. The same is true for a few shifts by r2, and hence also for a
few shifts by both r1 and r2. If S is approximated well by a discretized Gaussian, though, then it is also not
affected by small shifts, including shifts by 1, and in fact we need such a guarantee to prove approximation
by a discretized Gaussian through coupling. However, since gcd(r1, r2) = 1, basic number theory implies
that we can achieve any small integer shift via a small number of shifts by r1 and r2, and therefore S has
the required “fine-grained” shift-invariance (at scale 1) as well. Intuitively, for this to work we need samples
from r2 · S2 to “fill in the gaps” between successive values of r1 · S1 – this is why we need Var[S2]� r1.

This idea of exploiting both long-range and short-range shift invariance is new to the best of our knowl-
edge [Bar15] and seems likely to be of use in proving new central limit theorems.
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3 Lower bound techniques

In this section we give an overview of the ideas behind our lower bounds. Both of our lower bounds actually
work by considering restricted A-sums: our lower bounds can be proved using only distributions S of the
form S =

∑k
i=1 ai · Si, where S1, . . . ,Sk are independent PBDs; equivalently, S =

∑N
i=1 Xi where each

Xi is supported on one of {0, a1}, . . . , {0, ak}.

A useful reduction. The problem of learning a distribution modulo an integer plays a key role in both of
our lower bound arguments. More precisely, both lower bounds use a reduction which we establish that
an efficient algorithm for learning weighted PBDs with weights 0 < a1 < ... < ak implies an efficient
algorithm for learning with weights a1, ..., ak−1 modulo ak. This problem is specified as follows. An
algorithm which is given access to i.i.d. draws from the distribution (S mod ak) (note that this distribution
is supported over {0, 1, . . . , ak − 1}) where S is of the form a1 · S1 + ... + ak−1 · Sk−1 and S1, ...,Sk−1

are PBDs. The algorithm should produce a high-accuracy hypothesis distribution for (S mod ak). We
stress that the example points provided to the learning algorithm all lie in {0, . . . , ak − 1} (so certainly any
reasonable hypothesis distribution should also be supported on {0, . . . , ak − 1}). Such a reduction is useful
for our lower bounds because it enables us to prove a lower bound for learning

∑k
i=1 ai · Si by proving a

lower bound for learning
∑k−1

i=1 ai · Si mod ak.
The high level idea of this reduction is fairly simple so we sketch it here. Let S = a1 · S1 + · · · +

ak−1 · Sk−1 be a weighted sum of PBDs such that (S mod ak) is the target distribution to be learned and
let N be the total number of summands in all of the PBDs. Let Sk be an independent PBD with mean and
variance Ω(N?). The key insight is that by taking N? sufficiently large relative to N , the distribution of (S
mod ak) + ak · Sk (which can easily be simulated by the learner given access to draws from (S mod ak)
since it can generate samples from ak · Sk by itself) can be shown to be statistically very close to that of
S′ := S + ak · Sk. Here is an intuitive justification: We can think of the different possible outcomes of
ak ·Sk as dividing the support of S′ into bins of width ak. Sampling from S′ can be performed by picking a
bin boundary (a draw from ak ·Sk) and an offset S. While adding S may take the sample across multiple bin
boundaries, if Var[Sk] is sufficiently large, then adding S typically takes ak ·Sk +S across a small fraction
of the bin boundaries. Thus, the conditional distribution given membership in a bin is similar between bins
that have high probability under S′, which means that all of these conditional distributions are similar to
the distribution of S′ mod ak (which is a mixture of them) Finally, S′ mod ak has the same distribution
as S mod ak.) Thus, given samples from (S mod ak), the learner can essentially simulate samples from
S′. However, S′ is is a weighted sum of k PBDs, which by the assumption of our reduction theorem can be
learned efficiently. Now, assuming the learner has a hypothesis H such that dTV(H,S′) ≤ ε, it immediately
follows that dTV((H mod ak), (S

′ mod ak)) ≤ dTV(H,S′) ≤ ε as desired.

Proof overview of Theorem 5. At this point we have the task of proving a lower bound for learning
weighted PBDs over {0, a1, a2} mod a3. We establish such a lower bound using Fano’s inequality (stated
precisely as Theorem 27 in Section 4). To get a sample complexity lower bound of Ω(log log a3) from
Fano’s inequality, we must construct T = logΩ(1) a3 distributions S1, . . . , ST , where each Si is a weighted
PBD on {0, a1, a2} modulo a3, meeting the following requirements: dTV(Si,Sj) = Ω(1) if i 6= j, and
DKL(Si||Sj) = O(1) for all i, j ∈ T. In other words, applying Fano’s inequality requires us to exhibit
a large number of distributions (belonging to the family for which we are proving the lower bound) such
that any two distinct distributions in the family are far in total variation distance but close in terms of KL-
divergence. The intuitive reason for these two competing requirements is that if Si and Sj are 2ε-far in total
variation distance, then a successful algorithm for learning to error at most ε must be able to distinguish
Si and Sj . On the other hand, if Si and Sj are close in KL divergence, then it is difficult for any learning
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algorithm to distinguish between Si and Sj .
Now we present the high-level idea of how we may construct distributions S1,S2, . . . with the properties

described above to establish Theorem 5. The intuitive description of Si that we give below does not align
perfectly with our actual construction, but this simplified description is hopefully helpful in getting across
the main idea.

For the construction we fix a1 = 1, a2 = p and a3 = q. (We discuss how p and q are selected later;
this is a crucial aspect of our construction.) The i-th distribution Si is Si = Ui + pVi mod q; we describe
the distribution Si = Ui + pVi mod q in two stages, first by describing each Vi, and then by describing
the corresponding Ui. In the actual construction Ui and Vi will be shifted binomial distributions. Since a
binomial distribution is rather flat within one standard deviation of its mean, and decays exponentially after
that, it is qualitatively somewhat like the uniform distribution over an interval; for this intuitive sketch it is
helpful to think of Ui and Vi as actually being uniform distributions over intervals. We take the support
of V1 to be an interval of length q/p, so that adjacent members of the support of (pV1 mod q) will be at
distance p apart from each other. More generally, taking Vi to be uniform over an interval of length 2i−1q/p,
the average gap between adjacent members of supp(pVi mod q) is of length essentially p/2i−1, and by
a careful choice of p relative to q one might furthermore hope that the gaps would be “balanced”, so that
they are all of length roughly p/2i−1. (This “careful choice” is the technical heart of our actual construction
presented later.)

How does Ui enter the picture? The idea is to take each Ui to be uniform over a short interval, of length
3p/2i. This “fills in each gap” and additionally “fills in the first half of the following gap;” as a result, the
first half of each gap ends up with twice the probability mass of the second half. (As a result, every two
points have probability mass within a constant factor of each other under every distribution — in fact, any
point under any one of our distributions has probability mass within a constant factor of that of any other
point under any other one of our distributions. This gives the DKL(Si||Sj) ≤ O(1) upper bound mentioned
above.) For example, recalling that the “gaps” in supp(pV1 mod q) are of length p, choosing U1 to be
uniform over {1, . . . , 3p/2} will fill in each gap along with the first half of the following gap. Intuitively,
each Si = Ui + pVi is a “striped” distribution, with equal-width “light stripes” (of uniformly distributed
smaller mass) and “dark stripes” (of uniformly distributed larger mass), and each Si+1 has stripes of width
half of the Si-sum’s stripes. Roughly speaking, two such distributions Si and Sj “overlap enough” (by a
constant fraction) so that they are difficult to distinguish; however they are also “distinct enough” that a
successful learning algorithm must be able to distinguish which Si its samples are drawn from in order to
generate a high-accuracy hypothesis.

We now elaborate on the careful choice of p and q that was mentioned above. The critical part of this
choice of p and q is that for i ≥ 1, in order to get “evenly spaced gaps,” the remainders of p · s modulo q
where s ∈ {1, . . . , 2i−1q/p} should be roughly evenly spaced, or equidistributed, in the group Zq. Here
the notion of “evenly spaced” is with respect to the “wrap-around” distance (also known as the Lee metric)
on the group Zq (so, for example, the wrap-around distance between 1 and 2 is 1, whereas the wrap-around
distance between q− 1 and 1 is 2). Roughly speaking, we would like p · s modulo q to be equidistributed in
Zq when s ∈ {1, . . . , 2i−1q/p}, for a range of successive values of i (the more the better, since this means
more distributions in our hard family and a stronger lower bound). Thus, qualitatively, we would like the
remainders of p modulo q to be equidistributed at several scales. We note that equidistribution phenomena
are well studied in number theory and ergodic theory, see e.g. [Tao14].

While this connection to equidistribution phenomena is useful for providing visual intuition (at least to
the authors), in our attempts to implement the construction using powers of two that was just sketched, it
seemed that in order to control the errors that arise in fact a doubly exponential growth was required, leading
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to the construction of only Θ(log log q) such distributions and hence a Ω(log log log q) sample complexity
lower bound. Thus to achieve an Ω(log log q) sample complexity lower bound, our actual choice of p and q
comes from the theory of continued fractions. In particular, we choose p and q so that p/q has a continued
fraction representation with “many” (O(log q), though for technical reasons we use only logΘ(1) q many)
convergents that grow relatively slowly. These T = logΘ(1) q convergents translate into T distributions
S1, . . . ,ST in our “hard family” of distributions, and thus into an Ω(log log q) sample lower bound via
Fano’s inequality.

The key property that we use is a well-known fact in the theory of continued fractions: if gi/hi is the
ith convergent of a continued fraction for p/q, then |gi/hi − p/q| ≤ 1/(hi · hi+1). In other words, the
ith convergent gi/hi provides a non-trivially good approximation of p/q (note that getting an error of 1/hi
would have been trivial). From this property, it is not difficult to see that the remainders of p · {1, . . . , hi}
are roughly equidistributed modulo q.

Thus, a more accurate description of our (still idealized) construction is that we choose Vi to be uniform
on {1, . . . , hi} and Ui to be uniform on roughly {1, . . . , (3/2) · (q/hi)}. So as to have as many distributions
as possible in our family, we would like hi ≈ (q/p)·ci for some fixed c > 1. This can be ensured by choosing
p, q such that all the numbers appearing in the continued fraction representation of p/q are bounded by an
absolute constant; in fact, in the actual construction, we simply take p/q to be a convergent of 1/φ where φ
is the golden ratio. With this choice we have that the ith convergent of the continued fraction representation
of 1/φ is gi/hi, where hi ≈ ((

√
5 + 1)/2)i. This concludes our informal description of the choice of p and

q.
Again, we note that in our actual construction (see Figure 1), we cannot use uniform distributions over

intervals (since we need to use PBDs), but rather we have shifted binomial distributions. This adds some
technical complication to the formal proofs, but the core ideas behind the construction are indeed as de-
scribed above.

(a) (b) (c)

Figure 1: Examples of targets used in our lower bound construction for Theorem 5. Very roughly, the dis-
tribution in (b) has peaks where the distribution (a) does, plus a constant factor more peaks. To compensate,
its peaks are thinner. The distribution (c) has still more, still thinner, peaks.

Proof overview of Theorem 6. As mentioned earlier, Theorem 6 also uses our reduction from the modular
learning problem. Taking a1 = 0 and a3 ≈ amax to be “known” to the learner, we show that any algorithm
for learning a distribution of the form (a2S2 mod a3), where 0 < a2 < a3 is unknown to the learner and
S2 is a PBDN , must use Ω(log a3) samples. Like Theorem 5, we prove this using Fano’s inequality, by con-
structing a “hard family” of (a3)Ω(1) many distributions of this type such that any two distinct distributions
in the family have variation distance Ω(1) but KL-divergence O(1).
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We sketch the main ideas of our construction, starting with the upper bound on KL-divergence. The
value a3 is taken to be a prime. The same PBDN distribution S2, which is simply a shifted binomial
distribution and may be assumed to be “known” to the learner, is used for all of the distributions in the
“hard family”, so different distributions in this family differ only in the value of a2. The shifted binomial
distribution S2 is taken to have variance Θ((a3)2), so, very roughly, S2 assigns significant probability on
Θ(a3) distinct values. From this property, it is not difficult to show (similar to our earlier discussion) that
any point in the domain {0, 1, . . . , a3 − 1} under any one of our distributions has probability mass within
a constant factor of that of any other point under any other one of our distributions (where the constant
factor depends on the hidden constant in the Θ((a3)2)). This gives the required O(1) upper bound on
KL-divergence.

It remains to sketch the Ω(1) lower bound on variation distance. As in our discussion of the Theorem 5
lower bound, for intuition it is convenient to think of the shifted binomial distribution S2 as being uniform
over an interval of the domain {0, 1, . . . , a3 − 1}; by carefully choosing the variance and offset of this
shifted binomial, we may think of this interval as being {0, 1, . . . , r − 1} for r = κa3 for some small
constant κ > 0 (the constant κ again depends on the hidden constant in the Θ((a3)2)) value of the variance).
So for the rest of our intuitive discussion we view the distributions in the hard family as being of the form
(a2 ·Ur mod a3) where Ur is uniform over {0, 1, . . . , r − 1}, r = κa3.

Recalling that a3 is prime, it is clear that for any 0 < a2 < a3, the distribution (a2 ·Ur mod a3) is
uniform over an (r = κa3)-element subset of {0, . . . , a3 − 1}. If a2 and a′2 are two independent uniform
random elements from {1, . . . , a3 − 1}, then since κ is a small constant, intuitively the overlap between
the supports of (a2 ·Ur mod a3) and (a′2 ·Ur mod a3) should be small, and consequently the variation
distance between these two distributions should be large. This in turn suggests that by drawing a large
random set of values for a2, it should be possible to obtain a large family of distributions of the form (a2 ·Ur

mod a3) such that any two of them have large variation distance. We make this intuition precise using a
number-theoretic equidistribution result of Shparlinski [Shp08] and a probabilistic argument showing that
indeed a random set of (a3)1/3 choices of a2 is likely to have the desired property. This gives a “hard
family” of size (a3)1/3, leading to an Ω(log a3) = Ω(log amax) lower bound via Fano’s inequality. As
before some technical work is required to translate these arguments for the uniform distribution over to the
shifted binomial distributions that we actually have to work with, but we defer these technical details to
Section 13.

4 Preliminaries

4.1 Basic notions and useful tools from probability.

Distributions. We will typically ignore the distinction between a random variable and its distribution. We
use bold font Xi,S, etc. to denote random variables (and also distributions).

For a distribution X supported on the integers we write X(i) to denote the value Pr[X = i] of the
probability density function of X at point i, and X(≤ i) to denote the value Pr[X ≤ i] of the cumulative
density function of X at point i. For S ⊆ Z, we write X(S) to denote

∑
i∈S X(i) and XS to denote the

conditional distribution of X restricted to S.

Total Variation Distance. Recall that the total variation distance between two distributions X and Y over
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a countable set D is

dTV (X,Y) :=
1

2
·
∑
α∈D
|X(α)−Y(α)| = max

S⊆D
[X(S)−Y(S)],

with analogous definitions for pairs of distributions over R, over Rk, etc. Similarly, if X and Y are
two random variables ranging over a countable set, their total variation distance dTV(X,Y) is defined
as the total variation distance between their distributions. We sometimes write “X

ε
≈ Y” as shorthand for

“dTV(X,Y) ≤ ε”.

Shift-invariance. Let X be a finitely supported real-valued random variable. For an integer k we write
dshift,k(X) to denote dTV(X,X + k). We say that X is α-shift-invariant at scale k if dshift,k(X) ≤ α; if
X is α-shift-invariant at scale 1 then we sometimes simply say that X is α-shift-invariant. We will use the
following basic fact:

Fact 7. 1. If X,Y are independent random variables then dshift,k(X + Y) ≤ dshift,k(X).

2. Let X be α-shift-invariant at scale p and Y (independent from X) be β-shift-invariant at scale q.
Then X + Y is both α-shift-invariant at scale p and β-shift-invariant at scale q.

Kolmogorov Distance and the DKW Inequality. Recall that the Kolmogorov distance dK(X,Y) between
probability distributions over the integers is

dK(X,Y) := max
j∈Z
|Pr[X ≤ j]−Pr[Y ≤ j]|,

and hence for any interval I = {a, a+ 1, . . . , a+ b} ⊂ Z we have that

|Pr[X ∈ I]−Pr[Y ∈ I]| ≤ 2dK(X,Y).

Learning any distribution with respect to the Kolmogorov distance is relatively easy, which follows from
the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality. Let X̂m denote the empirical distribution of m i.i.d.
samples drawn from X. The DKW inequality states that form = Ω((1/ε2) · ln(1/δ)), with probability 1−δ
(over the draw of m samples from X) the empirical distribution X̂m will be ε-close to X in Kolmogorov
distance:

Theorem 8 ([DKW56, Mas90]). Let X̂m be an empirical distribution of m samples from distribution X
over the integers. Then for all ε > 0, we have

Pr[dK(X, X̂m) > ε] ≤ 2e−2mε2 .

It is intuitively not difficult to see that convolving with an α-shift invariant distribution can “spread the
butter” to transform distributions that are close w.r.t. Kolmogorov distance into distributions that are close
with respect to the more demanding total variation distance. The following lemma makes this intuition
precise:

Lemma 9 ([GMRZ11]). Let Y,Z be distributions supported on the integers and X be an α-shift invariant
distribution. Then for any a, b, we have that

dTV(Y + X,Z + X) = O(
√
dK(Y,Z) · b · α) + Pr[Y /∈ [a, a+ b)] + Pr[Z /∈ [a, a+ b)].
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We will also require a multidimensional generalization of Kolmogorov distance and of the DKW in-
equality. Given probability distributions X,Y over Zd, the Kolmogorov distance between X and Y is

dK(X,Y) := max
(j1,...,jd)∈Zd

|Pr[Xi ≤ ji for all i ∈ [d]]−Pr[Y ≤ ji for all i ∈ [d]]|,

and so for any axis-aligned rectangle R =
∏d
i=1{ai, . . . , ai + bi} ⊂ Zd we have

|Pr[X ∈ R]−Pr[Y ∈ R]| ≤ 2ddK(X,Y).

We will use the following generalization of the DKW inequality to the multidimensional setting.

Lemma 10 ([Tal94]). Let X̂m be an empirical distribution ofm samples from distribution X overZd. There
are absolute constants c1, c2 and c3 such that, for all ε > 0, for all m ≥ c1d/ε

2,

Pr[dK(X, X̂m) > ε] ≤ cd2e−c3ε
2m.

Covers. Let P denote a set of distributions over the integers. Given δ > 0, a set of distributions Q is said
to be a δ-cover of P (w.r.t. the total variation distance) if for every distribution P in P there exists some
distribution Q in Q such that dTV(P,Q) ≤ δ. We sometimes say that distributions P,Q are δ-neighbors if
dTV(P,Q) ≤ δ, or that P and Q are δ-close.

Support and essential support. We write supp(P) to denote the support of distribution P. Given a finitely
supported distribution P over the integers, we say that P is τ -essentially supported on S ⊂ Z if P(S) ≥
1− τ.

4.2 The distributions we work with.

We recall the definition of an A-sum and give some related definitions. For 0 ≤ a1 < ... < ak and
A = {a1, ..., ak}, a A-sum is a distribution S =

∑N
i=1 Xi where the Xi’s are independent integer random

variables (not assumed to be identically distributed) all of which are supported on the same set of integer
values a1 < a2 < · · · < ak ∈ Z≥0. A Poisson Binomial Distribution, or PBDN , is a {0, 1}-sum.

A weighted sum of PBDs is a distribution S = a2S2 + · · · + akSk where each Si is an independent
PBDNi and N2 + · · · + Nk = N. Equivalently we have that S =

∑N
i=1 Xi where N2 of the Xi’s are

supported on {0, a2}, N3 are supported on {0, a3}, and so on.
Let us say that a signed PBDN is a random variable S =

∑N
i=1 Xi where the Xi’s are independent and

each is either supported on {0, 1} or is supported on {0,−1}. We defined a weighted sum of signed PBDs
analogously to the unsigned case.

Finally, we say that an integer valued random variable X has mode 0 if Pr[X = 0] ≥ Pr[X = b] for all
b ∈ Z.

Translated Poisson Distributions and Discretized Gaussians. We will make use of the translated Poisson
distribution for approximating signed PBDs with large variance.

Definition 11 ([R0̈7]). We say that an integer random variable Y is distributed according to the translated
Poisson distribution with parameters µ and σ2, denoted TP (µ, σ2), iff Y can be written as

Y = bµ− σ2c+ Z,

where Z is a random variable distributed according to Poisson(σ2 + {µ− σ2}), where {µ− σ2} represents
the fractional part of µ− σ2.
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The following lemma gives a useful bound on the variation distance between a signed PBD and a suitable
translated Poisson distribution.

Lemma 12. Let S be a signed PBDN with mean µ and variance σ2 ≥ 1. Then

dTV

(
S, TP (µ, σ2)

)
≤ O(1/σ).

Proof. Without loss of generality we may suppose that S = X1 + · · · + XN where X1, . . . ,XM are
supported on {0,−1} with E[Xi] = −pi for i ≤ M , and XM+1, . . . ,XN are supported on {0, 1} with
E[Xi] = pi for i > M. Let X′i = Xi + 1 for 1 ≤ i ≤M , so S′ := X′1 + · · ·+ X′M + XM+1 + · · ·+ XN

are independent Bernoulli random variables where E[X′i] = 1− pi for i ≤M.
[R0̈7] (specifically equation (3.4)) shows that if J1, . . . ,JN are independent Bernoulli random variables

with E[Ji] = pi, then

dTV

(
N∑
i=1

Ji, TP (µ, σ2)

)
≤

√∑N
i=1 p

3
i (1− pi) + 2∑N

i=1 pi(1− pi)

where µ =
∑N

i=1 pi. Applying this to S′, we see that for µ′ = E[S′], we have

dTV

(
S′, TP (µ′, σ2)

)
≤

√∑M
i=1 pi(1− pi)3 +

∑N
i=M+1 p

3
i (1− pi) + 2∑N

i=1 pi(1− pi)

≤

√∑N
i=1 pi(1− pi) + 2∑N
i=1 pi(1− pi)

≤ O(1/σ).

The claimed bound follows from this on observing that S′ is a translation of S by M and TP (µ′, σ2) is
likewise a translation of TP (µ, σ2) by M .

The following bound on the total variation distance between translated Poisson distributions will be
useful.

Lemma 13 (Lemma 2.1 of [BL06]). For µ1, µ2 ∈ R and σ2
1, σ

2
2 ∈ R+ with bµ1 − σ2

1c ≤ bµ2 − σ2
2c, we

have

dTV(TP (µ1, σ
2
1), TP (µ2, σ

2
2)) ≤ |µ1 − µ2|

σ1
+
|σ2

1 − σ2
2|+ 1

σ2
1

.

We will also use discretized Gaussians, both real-valued and vector-valued (i.e. multidimensional). A
draw from the discretized Gaussian ND(µ, σ2) is obtained by making a draw from the normal distribution
N (µ, σ) and rounding to the nearest integer. We refer to µ and σ2 respectively as the “underlying mean”
and “underlying variance” of ND(µ, σ). Similarly, a draw from the multidimensional discretized Gaussian
ND(µ,Σ) is obtained by making a draw from the multidimensional Gaussian N (µ,Σ) with mean vector µ
and covariance matrix Σ and rounding each coordinate to the nearest integer. To avoid confusion we will
always explicitly write “multidimensional” when dealing with a multidimensional Gaussian.

We recall some simple facts about the variation distance between different discretized Gaussian distri-
butions (see Appendix B of the full version of [DDO+13]):

Lemma 14 (Proposition B.5 of [DDO+13]). Let G be distributed as N (µ, σ2) and let λ ∈ R. Then
dTV(bG + λc, bGc+ bλc) ≤ 1

2σ .
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The same argument that gives Lemma 14 also gives the following small extension:

Lemma 15. Let G be distributed asN (µ, σ2) and let λ ∈ R, ρ ∈ Z. Then dTV(bG+λc, bGc+ρ) ≤ |ρ−λ|2σ .

We will use the following theorem about approximation of signed PBDs.

Theorem 16 ([CGS11] Theorem 7.13). For S a signed PBD, dTV(S,ND(µ, σ2)) ≤ O(1/σ) where µ =
E[S] and σ2 = Var[S].

The following is a consequence of Theorem 16 and Lemma 15 which we explicitly record for later
reference:

Fact 17. Let S be a signed PBD with Var[S] = σ2
S. Then S is τ -shift-invariant at scale 1 for τ = O(1/σS),

and hence for any integer c, the distribution cS is τ -shift-invariant at scale c.

We also need a central limit theorem for multinomial distributions. We recall the following result, which
is a direct consequence of the “size-free CLT” for Poisson Multinomial Distributions in [DDKT16]. (Below
we write ei to denote the real vector in {0, 1}d that has a 1 only in the i-th coordinate.)

Theorem 18. Let X1, . . . ,XN be independent Zd-valued random variables where the support of each Xi

is contained in the set {0,±e1, . . . ,±ed}. Let M = X1 + . . .+ XN . Then we have

dTV(M,ND(µ,Σ)) ≤ O

(
d7/2

σ1/10

)
,

where µ = E[M] is the mean and Σ is the d× d covariance matrix of S, and σ2 is the minimum eigenvalue
of Σ.

Covers and structural results for PBDs. Our proof of Theorem 4, which is about learning PBDs that have
been subject to an unknown shifting and scaling, uses the fact that for any ε there is a “small cover” for the
set of all PBDN distributions. We recall the following from [DP14]:

Theorem 19 (Cover for PBDs). Let S be any PBDN distribution. Then for any ε > 0, we have that either

• S is ε-essentially supported on an interval of O(1/ε3) consecutive integers (in this case we say that
S is in sparse form); or if not,

• S is ε-close to some distribution u + Bin(`, q) where u, ` ∈ {0, 1, . . . , N}, and Var[Bin(`, q)] =
Ω(1/ε2) (in this case we say that S is in 1/ε-heavy Binomial form).

We recall some well-known structural results on PBDs that are in 1/ε-heavy Binomial form (see e.g.
[CGS11], Theorem 7.1 and p. 231):

Fact 20. Let Y be a PBDN distribution that is in 1/ε-heavy Binomial form as described in Theorem 19.
Then

1. dTV(Y,Z) = O(ε), where Z is a discretized N (E[Y],Var[Y]) Gaussian.

2. dshift,1(Y) = O(ε).
3The theorem in [CGS11] is stated only for PBDs, but the result for signed PBDs is easily derived from the result for PBDs via

a simple translation argument similar to the proof of Lemma 12.
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4.3 Extension of the Barbour-Xia coupling lemma

In [BX99], Barbour and Xia proved the following lemma concerning the shift-invariance of sums of inde-
pendent integer random variables.

Lemma 21 ([BX99], Proposition 4.6). Let X1, . . . ,XN beN independent integer valued random variables
and let S = X1 + . . .+ XN . Let dshift,1(Xi) ≤ 1− δi. Then,

dshift,1(S) ≤ O
(

1√∑N
i=1 δi

)
.

We require a dshift,p analogue of this result. To obtain such an analogue we first slightly generalize the
above lemma so that it does not require Xi to be supported on Z. The proof uses a simple reduction to the
integer case.

Claim 22. Let X1, . . . ,XN be N independent finitely supported random variables and let S = X1 + . . .+
XN . Let dshift,1(Xi) ≤ 1− δi. Then,

dshift,1(S) ≤ O
(

1√∑N
i=1 δi

)
.

Proof. Assume that for any i, the support of Xi is of size at most k and is supported in the interval [−k, k].
(By the assumption of finite support this must hold for some integer k.) Given any Xi, create a new random
variable Yi which is defined as follows: First, let us partition the support of Xi by putting two outcomes
into the same cell whenever the difference between them is an integer. Let S(i)

1 , . . . , S
(i)
k′ be the non-empty

cells, so k′ ≤ k, and, for each S(i)
j , there is a real βj such that S(i)

j ⊆ {βj + ` : ` ∈ Z}. Let γj,i denote

the smallest element of S(i)
j . Let us define integers {mj,i}1≤j≤k,1≤i≤N as follows: mj,i = (N · k)k·i+j .

The random variable Yi is defined as follows: For all ` ∈ Z+, let the map Mi send γj,i + ` to mj,i + `.
The probability distribution of Yi is the distributed induced by the map Mi when acting on Xi, i.e. a draw
from Yi is obtained by drawing xi from Xi and outputting Mi(xi). It is clear that Yi is integer-valued and
satisfies

dshift,1(Xi) = dshift,1(Yi).

Now consider a sequence of outcomes Y1 = y1, . . . ,YN = yN and Y′1 = y′1, . . . ,Y
′
N = y′N such that

∣∣ N∑
i=1

(yi − y′i)
∣∣ = 1.

We can write each yi asmαi,i+δi where each 1 ≤ αi ≤ k and each−k ≤ δi ≤ k. Likewise, y′i = mα′i,i
+δ′i

where each 1 ≤ α′i ≤ k and each−k ≤ δ′i ≤ k. Sincemj,i = (N ·k)k·i+j , it is easy to see that the following
must hold:

For all i = 1, . . . , N, mαi,i = mα′i,i
and

∣∣∣∣∣
N∑
i=1

(δi − δ′i)

∣∣∣∣∣ = 1.

This immediately implies that dshift,1
(∑N

i=1 Xi

)
= dshift,1

(∑N
i=1 Yi

)
. Applying Lemma 21, we have

that

dshift,1(

N∑
i=1

Yi) ≤ O

 1√∑N
i=1 δi

 ,
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which finishes the upper bound.

This immediately yields the following corollary.

Corollary 23. Let X1, . . . ,XN be finitely supported independent integer valued random variables. Let
dshift,p(Xi) ≤ 1− δi. Then, for S =

∑N
i=1 Xi, we have

dshift,p(S) = O

 1√∑N
i=1 δi

 .

Proof. Let Yi = Xi/p for all 1 ≤ i ≤ N . Then for S′ =
∑N

i=1 Yi, it is clear that dshift,1(S′) = dshift,p(S).
Applying Claim 22, we get the corollary.

4.4 Other background results on distribution learning.

Learning distributions with small essential support. We recall the following folklore result, which says
that distributions over a small essential support can be learned efficiently:

Fact 24. There is an algorithmA with the following performance guarantee: A is given a positive integer s,
an accuracy parameter ε, a confidence parameter δ, and access to i.i.d. draws from an unknown distribution
P over Z that is promised to be ε-essentially supported on some set S with |S| = s. Algorithm A makes
m = poly(s, 1/ε, log(1/δ)) draws from P, runs for time poly(s, 1/ε, log(1/δ)) and with probability at
least 1− δ outputs a hypothesis distribution P̃ such that dTV(P, P̃) ≤ 2ε.

(The algorithm of Fact 24 simply returns the empirical distribution of its m draws from P.) Note that
by Fact 24, if S is a sum of N < poly(1/ε) integer random variables then there is a poly(1/ε)-time,
poly(1/ε)-sample algorithm for learning S, simply because the support of S is contained in a set of size
poly(1/ε). Thus in the analysis of our algorithm for k = 3 we can (and do) assume that N is larger than
any fixed poly(1/ε) that arises in our analysis.

4.4.1 Hypothesis selection and “guessing”.

To streamline our presentation as much as possible, many of the learning algorithms that we present are
described as “making guesses” for different values at various points in their execution. For each such
algorithm our analysis will establish that with very high probability there is a “correct outcome” for the
guesses which, if it is achieved (guessed), results in an ε-accurate hypothesis. This leads to a situation in
which there are multiple hypothesis distributions (one for each possible outcome for the guesses that the
algorithm makes), one of which has high accuracy, and the overall learning algorithm must output (with
high probability) a high-accuracy hypothesis. Such situations have been studied by a range of authors (see
e.g. [Yat85, DK14, AJOS14, DDS12c, DDS15]) and a number of different procedures are known which can
do this. For concreteness we recall one such result, Proposition 6 from [DDS15]:

Proposition 25. Let D be a distribution over a finite set W and let Dε = {Dj}Mj=1 be a collection of
M hypothesis distributions over W with the property that there exists i ∈ [M ] such that dTV(D,Di) ≤ ε.
There is an algorithm SelectD which is given ε and a confidence parameter δ, and is provided with access to
(i) a source of i.i.d. draws from D and from Di, for all i ∈ [M ]; and (ii) an “evaluation oracle” evalDi , for
each i ∈ [M ], which, on input w ∈ W , deterministically outputs the value Di(w). The SelectD algorithm
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has the following behavior: It makes m = O
(
(1/ε2) · (logM + log(1/δ))

)
draws from D and from each

Di, i ∈ [M ], and O(m) calls to each oracle evalDi , i ∈ [M ]. It runs in time poly(m,M) (counting each
call to an evalDi oracle and draw from a Di distribution as unit time), and with probability 1− δ it outputs
an index i? ∈ [M ] that satisfies dTV(D,Di?) ≤ 6ε.

We shall apply Proposition 25 via the following simple corollary (the algorithm (A′ described below
works simply by enumerating over all possible outcomes of all the guesses and then running the SelectD

procedure of Proposition 25):

Corollary 26. Suppose that an algorithm A for learning an unknown distribution D works in the following
way: (i) it “makes guesses” in such a way that there are a total of M possible different vectors of outcomes
for all the guesses; (ii) for each vector of outcomes for the guesses, it makes m draws from D and runs
in time T ; (iii) with probability at least 1 − δ, at least one vector of outcomes for the guesses results in
a hypothesis D̃ such that dTV(D, D̃) ≤ ε, and (iv) for each hypothesis distribution D′ corresponding to
a particular vector of outcomes for the guesses, A can simulate a random draw from D′ in time T ′ and
can simulate a call to the evaluation oracle evalD′ in time T ′. Then there is an algorithm A′ that makes
m + O

(
(1/ε2) · (logM + log(1/δ))

)
draws from D; runs in time O(TM) + poly(m,M, T ′); and with

probability at least 1− 2δ outputs a hypothesis distribution D̃ such that dTV(D, D̃) ≤ 6ε.

We will often implicitly apply Corollary 26 by indicating a series of guesses and specifying the possible
outcomes for them. It will always be easy to see that the space of all possible vectors of outcomes for
all the guesses can be enumerated in the required time. In Appendix A we discuss the specific form of
the hypothesis distributions that our algorithm produces and show that the time required to sample from or
evaluate any such hypothesis is not too high (at most 1/ε2poly(k) when |A| = 3, hence negligible given our
claimed running times).

4.5 Small error

We freely assume throughout that the desired error parameter ε is at most some sufficiently small absolute
constant value.

4.6 Fano’s inequality and lower bounds on distribution learning.

A useful tool for our lower bounds is Fano’s inequality, or more precisely, the following extension of it given
by Ibragimov and Khasminskii [IH81] and Assouad and Birge [AB83]:

Theorem 27 (Generalization of Fano’s Inequality.). Let P1, . . . ,Pt+1 be a collection of t+ 1 distributions
such that for any i 6= j ∈ [t+ 1], we have (i) dTV(Pi,Pj) ≥ α/2, and (ii) DKL(Pi||Pj) ≤ β, where DKL

denotes Kullback-Leibler divergence. Then, to achieve expected error at most α/4, any learning algorithm
must have sample complexity Ω

(
ln t
β

)
.

5 Tools for kernel-based learning

At the core of our actual learning algorithm is the well-known technique of learning via the “kernel method”
(see [DL01]). In this section we set up some necessary machinery for applying this technique in our context.

The goal of this section is ultimately to establish Lemma 34, which we will use later in our main learning
algorithm. Definition 28 and Lemma 34 together form a “self-contained take-away” from this section.

We begin with the following important definition.
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Definition 28. Let Y,Z be two distributions supported on Z. We say that Y is (ε, δ)-kernel learnable from
T = T (ε, δ) samples using Z if the following holds: Let Ŷ = {y1, . . . , yT1} be a multiset of T1 ≥ T i.i.d.
samples drawn from Y and let U

Ŷ
be the uniform distribution over Ŷ . Then with probability 1 − δ (over

the outcome of Ŷ ) it is the case that dTV(U
Ŷ

+ Z,Y) ≤ ε.

Intuitively, the definition says that convolving the empirical distribution U
Ŷ

with Z gives a distribution
which is close to Y in total variation distance. Note that once T1 is sufficiently large, U

Ŷ
is close to Y in

Kolmogorov distance by the DKW inequality. Thus, convolving with Z smoothens U
Ŷ

.
The next lemma shows that if Y is (ε, δ)-kernel learnable, then a mixtures of shifts of Y is also (ε, δ)-

kernel learnable with comparable parameters (provided the number of components in the mixture is not too
large).

Lemma 29. Let Y be (ε, δ)-kernel learnable using Z from T (ε, δ) samples. If X is a mixture (with arbitrary
mixing weights) of distributions c1 + Y, . . . , ck + Y for some integers c1, . . . , ck, then X is (7ε, 2δ)-kernel
learnable from T ′ samples using Z, provided that T ′ ≥ max

{
kT (ε,δ/k)

ε , C · k
2 log(k/δ)

ε2

}
.

Proof. Let πj denote the weight of distribution cj + Y in the mixture X. We view the draw of a sample
point from X as a two stage process, where in the first stage an index 1 ≤ j ≤ k is chosen with probability
πj and in the second stage a random draw is made from the distribution cj + Y.

Consider a draw of T ′ independent samples x1, . . . , xT ′ from X. In the draw of xi, let the index chosen
in the first stage be denoted ji (note that 1 ≤ ji ≤ k). For j ∈ [k] define

Sj = {1 ≤ i ≤ T ′ : ji = j}.

The idea behind Lemma 29 is simple. Those j such that πj is small will have |Sj | small and will not
contribute much to the error. Those j such that πj is large will have |Sj |/T ′ very close to πj so their
cumulative contribution to the total error will also be small since each such U{xi:i∈Sj} + Z is very close to
the corresponding cj + Y. We now provide details.

Since T ′ ≥ O
(
k2 log(k/δ)

ε2

)
, a simple Chernoff bound and union bound over all j ∈ [k] gives that∣∣∣∣ |Sj |T ′ − πj

∣∣∣∣ ≤ ε/k for all j ∈ [k] (1)

with probability at least 1 − δ. For the rest of the analysis we assume that indeed (1) holds. We observe
that even after conditioning on (1) and on the outcome of j1, . . . , jT ′ , it is the case that for each i ∈ [T ′] the
value xi is drawn independently from cji + Y.

Let Low denote the set {1 ≤ j ≤ k : T ′ · (πj − ε/k) ≤ T (ε, δ/k)}, so each j /∈ Low satisfies
T ′ · (πj − ε/k) ≥ T (ε, δ/k). Fix any j 6∈ Low. From (1) and the definition of Low we have that |Sj | ≥
T ′ · (πj − ε/k) ≥ T (ε, δ/k), and since cj + Y is (ε, δ/k)-kernel learnable from T (ε, δ/k) samples using
Z, it follows that with probability at least 1− δ/k we have

dTV

(
U{xi:i∈Sj} + Z, cj + Y

)
≤ ε,

and thus ∑
z∈Z

∣∣∣∣ |Sj |T ′ Pr[U{xi:i∈Sj} + Z = z]− πj Pr[Y = z]

∣∣∣∣
≤
∣∣∣∣ |Sj |T ′ − πj

∣∣∣∣+ max

{
|Sj |
T ′

, πj

}
· ε

2
. (2)
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By a union bound, with probability at least 1 − δ the bound (2) holds for all j /∈ Low. For j ∈ Low, we
trivially have∑

z∈Z

∣∣∣∣ |Sj |T ′ Pr[U{xi:i∈Sj} + Z = z]− πj Pr[Y = z]

∣∣∣∣ ≤ |Sj |T ′ + πj ≤
∣∣∣∣ |Sj |T ′ − πj

∣∣∣∣+ 2 · πj .

Next, note that ∑
j∈Low

πj ≤
∑
j∈Low

(
T (ε, δ/k)

T ′
+ ε/k

)
≤
∑
j∈Low

(ε/k + ε/k) ≤ 2ε.

Thus, we obtain that

∑
z∈Z

∣∣∣∣∣∣
k∑
j=1

|Sj |
T ′

Pr[U{xi:i∈Sj} + Z = z]−
k∑
j=1

πj Pr[Y = z]

∣∣∣∣∣∣
≤

k∑
j=1

∑
z∈Z

∣∣∣∣∣∣ |Sj |T ′ Pr[U{xi:i∈Sj} + Z = z]−
k∑
j=1

πj Pr[Y = z]

∣∣∣∣∣∣
≤

k∑
j=1

∣∣∣∣ |Sj |T ′ − πj
∣∣∣∣+

∑
j 6∈Low

max

{
|Sj |
T ′

, πj

}
· ε

2
+ 2

∑
j∈Low

πj ≤ 7ε.

As X is obtained by mixing c1 + Y, ..., ck + Y with weights π1, ..., πk and Ux1,...,xT ′ is obtained by
mixing U{xi:i∈S1}, ...,U{xi:i∈Sk} with weights |S1|

T ′ , ...,
|Sk|
T ′ , the lemma is proved.

The next lemma is a formal statement of the well-known robustness of kernel learning; roughly speaking,
it says that if X is kernel learnable using Z then any X′ which is close to X is likewise kernel learnable
using Z.

Lemma 30. Let X be (ε, δ)-kernel learnable from Z using T (ε, δ) samples, and suppose that 0 <

dTV(X,X′) = κ < 1. If T0 > max{T (ε, δ), C · log(1/δ)
ε2
}, then X′ is (2ε + 2κ, 2δ)-kernel learnable

from T0 samples using Z.

Proof. We establish some useful notation: let Xcommon denote the distribution defined by

Pr[Xcommon = i] =
min{Pr[X = i],Pr[X′ = i]}∑
i min{Pr[X = i],Pr[X′ = i]}

,

let Xresidual denote the distribution defined by

Pr[Xresidual = i] =
Pr[X = i]−min{Pr[X = i],Pr[X′ = i]}∑
i(Pr[X = i]−min{Pr[X = i]Pr[X′ = i]})

,

and likewise let X′residual denote the distribution defined by

Pr[X′residual = i] =
Pr[X′ = i]−min{Pr[X = i],Pr[X′ = i]}∑
i(Pr[X′ = i]−min{Pr[X = i]Pr[X′ = i]})

.

A draw from X (from X′ respectively) may be obtained as follows: draw from Xcommon with probability
1 − κ and from Xresidual (from X′residual respectively) with the remaining κ probability. To see this, note
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that if X̃ is a random variable generated according to this two-stage process and C ∈ {0, 1} is an indicator
variable for whether the draw was from Xcommon, then, since κ = 1 −

∑
i min{Pr[X = i],Pr[X′ = i]},

we have

Pr[X̃ = i] = Pr[X̃ = i ∧C = 1] + Pr[X̃ = i ∧C = 0]

=
min{Pr[X = i],Pr[X′ = i]}

1− κ
× (1− κ) +

Pr[X′ = i]−min{Pr[X = i],Pr[X′ = i]}
1− (1− κ)

× κ

= Pr[X = i].

We consider the following coupling of (X,X′): to make a draw of (x, x′) from the coupled joint dis-
tribution (X,X′), draw xcommon from Xcommon, draw xresidual from Xresidual, and draw x′residual from
X′residual. With probability 1 − κ output (xcommon, xcommon) and with the remaining κ probability output
(xresidual, x

′
residual).

Let ((x1, x
′
1), . . . , (xT0 , x

′
T0

)) be a sample of T0 pairs each of which is independently drawn from the
coupling of (X,X′) described above. Let X̂ = (x1, . . . , xT0) and X̂ ′ = (x′1, . . . , x

′
T0

) and observe that X̂
is a sample of T0 i.i.d. draws from X and similarly for X̂ ′. We have

dTV(U
X̂′ + Z,X′) ≤ dTV(U

X̂′ + Z,U
X̂

+ Z) + dTV(U
X̂

+ Z,X) + dTV(X,X′)

≤ dTV(U
X̂′ ,UX̂

) + ε+ κ (by the data processing inequality for `1),

where the second inequality holds with probability 1− δ over the draw of X̂ since T0 ≥ T (ε, δ). A simple
Chernoff bound tells us that with probability at least 1− δ, the fraction of the T0 ≥ C · log(1/δ)

ε2
pairs that are

of the form (xresidual, x
′
residual) is at most κ+ ε. Given that this happens we have dTV(U

X̂′ ,UX̂
) ≤ κ+ ε,

and the lemma is proved.

To prove the next lemma (Lemma 32 below) we will need a multidimensional generalization of the
usual coupling argument used to prove the correctness of the kernel method. This is given by the following
proposition:

Proposition 31. Let X,Y be random variables supported on Zk. For 1 ≤ j ≤ k, let aj , bj ∈ Z and let
B = [a1, a1 + b1]× . . .× [ak, ak + bk]. Let Pr[X 6∈ B],Pr[Y 6∈ B] ≤ δ. Let Z be supported on Zk and be
such that for 1 ≤ j ≤ k, dTV(Z,Z + ej) ≤ βj for βj ≤ 1/bj . If dK(X,Y) ≤ κ, then,

dTV(X + Z,Y + Z) ≤ 2δ +O(k) ·
(
κ ·

k∏
i=1

bi · βi
) 1
k+1

.

Proof. Let d1, . . . , dk be positive integers that we will fix later. Divide the box B into boxes of size at most
d1 × . . .× dk by dividing each [ai, ai + bi] into intervals of size di (except possibly the last interval which
may be smaller). Let S denote the resulting set of k-dimensional boxes induced by these intervals, and note
that the number of boxes in S is `1 × . . .× `k where `j = dbj/dje.

Let µX and µY be the probability measures associated with X and Y, and let µX,B and µY,B be the
restrictions of µX and µY to the box B (so µX and µY assign value zero to any point not in B). For a box
S ∈ S, let µX,S denote the restriction of µX to S. Let xS = Pr[X ∈ S] and yS = Pr[Y ∈ S]. Let
wS = min{xS , yS}. Let XS and YS be the random variables obtained by conditioning X and Y on S, and
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µXS
and µYS

be their measures. Note that µX,S = xS · µXS
and µY,S = yS · µYS

. With this notation in
place, using f ∗ g to denote the convolution of the measures f and g, we now have

dTV(X + Z,Y + Z) =
1

2
`1(µX+Z, µY+Z)

=
1

2
`1(µX ∗ µZ, µY ∗ µZ)

≤ Pr[X 6∈ B] + Pr[Y 6∈ B] +
1

2
`1(µX,B ∗ µZ, µY,B ∗ µZ)

≤ 2δ +
1

2

∑
S∈S

`1(µX,S ∗ µZ, µY,S ∗ µZ)

≤ 2δ +
1

2

∑
S∈S

`1(xSµXS
∗ µZ, ySµYS

∗ µZ)

≤ 2δ +
1

2

∑
S∈S

`1(wSµXS
∗ µZ, wSµYS

∗ µZ) +
∑
S∈S
|xS − yS |

≤ 2δ +
1

2

∑
S∈S

wS`1(µXS
∗ µZ, µYS

∗ µZ) + |S| · κ

≤ 2δ +
∑
S∈S

wSdTV(XS + Z,YS + Z) + |S| · κ.

Here the second to last inequality uses the fact that the definition of dK(X,Y) gives sup |xS − yS | ≤ κ.
Next, notice that since dTV(Z,Z + ej) ≤ βj and each box in S has size at most d1 × . . .× dk, we get that
dTV(XS + Z,YS + Z) ≤

∑k
i=1 βi · di. Thus, using that |S| =

∏k
j=1dbj/dje and

∑
S∈S wS ≤ 1, we have

dTV(X + Z,Y + Z) ≤ 2δ +
∑
S∈S

wS ·
( k∑
i=1

βi · di
)

+ κ ·
k∏
j=1

dbj/dje.

Optimizing the parameters d1, . . . , dk, we set

For 1 ≤ i ≤ k, di =

⌈
c

βi

⌉
and c =

(
κ ·

k∏
i=1

bi · βi
) 1
k+1

.

Since βi ≤ 1/bi for each i, this yields that

dTV(X + Z,Y + Z) ≤ 2δ +O(k) ·
(
κ ·

k∏
i=1

bi · βi
) 1
k+1

.

Now we can prove Lemma 32, which we will use to prove that a weighted sum of high-variance PBDs
is kernel-learnable for appropriately chosen smoothening distributions.

Lemma 32. Let X1, . . . ,Xk be independent random variables over Z such that

1. For 1 ≤ j ≤ k, there exist aj , bj ∈ Z, δj ≥ 0 such that Pr[Xj 6∈ [aj , aj + bj ]] ≤ δj ,
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2. For all 1 ≤ j ≤ k, there exists βj > 0 such that dshift,1(Xj) ≤ βj .

Let Y =
∑k

j=1 pj ·Xj for some integers p1, . . . , pk. Let Zj be the uniform distribution on the set [−cj , cj ]
where cj ∈ Z satisfies cj = Θ(ε)

k·βj and 1 ≤ cj ≤ bj and Z1, . . . ,Zk are mutually independent and indepen-

dent of X1, . . . ,Xk. Define Z =
∑k

j=1 pj · Zj . Then Y is (ε+ 4(δ1 + . . .+ δk), δ)-kernel learnable using

Z from T = kO(k) · 1
ε4k
·
(∏k

j=1 bj · βj
)2 · log(1/δ) + log(4k

δ ) ·maxj 1/δ2
j samples.

Proof. We first observe that

dTV(Y + Z,Y) ≤
k∑
j=1

dTV(pj ·Xj + pj · Zj , pj ·Xj)

=
k∑
j=1

dTV(Xj + Zj ,Xj) ≤
k∑
j=1

cj · βj = Θ(ε) (3)

where the last inequality uses the fact that Zj is supported on the interval [−cj , cj ] and dshift,1(Xj) ≤
βj . Now, consider a two-stage sampling process for an element y ← Y: For 1 ≤ j ≤ k, we sample
x

(y)
j ∼ Xj and then output y =

∑k
j=1 pj · x

(y)
j . Thus, for every sample y, we can associate a sample

x(y) = (x
(y)
1 , . . . , x

(y)
k ). For y1, . . . , yT ← Y, let x(y1), . . . , x(yT ) denote the corresponding samples from

Zk. Let U
X̂

denote the uniform distribution over the multiset of T samples x(y1), . . . , x(yT ), and let U
Ŷ

denote the uniform distribution on y1, . . . , yT . Let Xmulti = (X1,X2, . . . ,Xk). By Lemma 10, we get that
if T ≥ c(k + log(1/δ))/η2 (for a parameter η we will fix later), then with probability 1 − δ/2 we have
dK(Xmulti,UX̂

) ≤ η; moreover, if T ≥ log(4k
δ ) ·maxj 1/δ2

j , then by a Chernoff bound and a union bound
we have that Pr[(U

X̂
)j 6∈ [aj , aj + bj ]] ≤ 2δj for 1 ≤ j ≤ k (which we will use later) with probability

1 − δ/2. In the rest of the argument we fix such an X̂ satisfying these conditions, and show that for the
corresponding Ŷ we have dTV(Y,U

Ŷ
+Z) ≤ 4(δ1 + . . .+ δk) + ε, thus establishing kernel learnability of

Y using Z.
Next, we define Zmulti = (Z1, . . . ,Zk), with the aim of applying Proposition 31. We observe that

dTV(Zmulti,Zmulti+ej) ≤ 1
cj

and as noted above, for 1 ≤ j ≤ k we have Pr[(U
X̂

)j 6∈ [aj , aj +bj ]] ≤ 2δj .
Define the box B = [a1, a1 + b1]× . . .× [ak, ak + bk]. Applying Proposition 31, we get

dTV(Xmulti + Zmulti,UX̂
+ Zmulti) ≤ 4(δ1 + . . .+ δk) +O(k) ·

(
η ·

k∏
i=1

(bi/ci)

) 1
k+1

.

Taking an inner product with p = (p1, . . . , pk), we get

dTV(Y + Z,U
Ŷ

+ Z) = dTV(〈p,Xmulti + Zmulti〉, 〈p,UX̂
+ Zmulti〉)

≤ dTV(Xmulti + Zmulti,UX̂
+ Zmulti)

≤ 4(δ1 + . . .+ δk) +O(k) ·
(
η ·

k∏
i=1

(bi/ci)

) 1
k+1

.

Combining this with (3), we get that

dTV(Y,U
Ŷ

+ Z) ≤ 4(δ1 + . . .+ δk) +O(k) ·
(
η ·

k∏
i=1

(bi/ci)

) 1
k+1

+ Θ(ε), (4)
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so plugging in the value of ci = Θ(ε)
k·βi , we get that

dTV(Y,U
Ŷ

+ Z) ≤ 4(δ1 + . . .+ δk) + Θ(ε) +O(k) ·
(
η · k

k

εk
·
k∏
i=1

(biβi)

) 1
k+1

.

Setting η = ε2k+1

k2k+1 · 1(∏k
j=1 bj ·βj

) , the condition T ≥ c(k + log(1/δ))/η2 from earlier becomes

T ≥ c(k + log(1/δ))/η2 =
kO(k)

εO(k)
·
( k∏
j=1

bj · βj
)2 · log(1/δ)

and we have dTV(Y,U
Ŷ

+ Z) ≤ 4(δ1 + . . .+ δk) + Θ(ε), proving the lemma.

We specialize Lemma 32 to establish kernel learnability of weighted sums of signed PBDs as follows:

Corollary 33. Let S1, . . . ,Sk be independent signed PBDs and let Y =
∑k

j=1 pj ·Sj . Let σ2
j = Var[Sj ] =

ω(k2/ε2) and let Zj be the uniform distribution on [−cj , cj ] ∩ Z where cj = Θ(ε · σj/k). Let Z =∑k
j=1 pj · Zj . Then Y is (ε, δ)-kernel learnable using Z from T = kO(k)

εO(k) · log(1/δ) samples.

Proof. Note that for 1 ≤ j ≤ k, there are integers aj such that for bj = O(σj · ln(k/ε)), by Bernstein’s
inequality we have Pr[Sj 6∈ [aj , aj + bj ]] ≤ ε/k. Also, recall from Fact 17 that dshift,1(Sj) = O(1)

σj
. Since

each cj satisfies 1 ≤ cj ≤ bj , we may apply Lemma 32 and we get that Y is (O(ε), δ)-kernel learnable
using T = kO(k)

εO(k) · log(1/δ) samples.

(It should be noted that while the previous lemma shows that a weighted sum of signed PBDs that have
“large variance” are kernel learnable, the hypothesis U

Ŷ
+Z is based on Z and thus constructing it requires

knowledge of the variances σ1, . . . , σj ; thus Lemma 32 does not immediately yield an efficient learning
algorithm when the variances of the underlying PBDs are unknown. We will return to this issue of knowing
(or guessing) the variances of the constituent PBDs later.)

Finally, we generalize Corollary 33 to obtain a robust version. Lemma 34 will play an important role in
our ultimate learning algorithm.

Lemma 34. Let S be κ-close to a distribution of the form S′ = Soffset+
∑K

j=1 pj ·Sj , where Soffset,S1, . . . ,SK
are all independent and S1, . . . ,SK are signed PBDs. For a ∈ [K] let σ2

a = Var[Sa] = ω(K2/ε2). Let
m = |supp(Soffset)| and let γ1, . . . , γK be such that for all 1 ≤ a ≤ K we have σa ≤ γa ≤ 2σa. Let Zj be
the uniform distribution on the interval [−cj , cj ]∩Z where cj = Θ(ε · γj/K). Then for Z =

∑K
a=1 pa ·Za,

the distribution S is (O(ε+ κ), O(δ))-kernel learnable using Z from KO(K)

εO(K) ·m2 · log(m/δ) samples.

Proof. Applying Corollary 33 and Lemma 29, we first obtain that the distribution S′ is (O(ε), O(δ))-kernel-
learnable using Z from KO(K)

εO(K) · m2 · log(m/δ) samples. Now, applying Lemma 30, we obtain that S is

(O(ε+ κ), O(δ + κ))-learnable using Z from KO(K)

εO(K) ·m2 · log(m/δ) samples.

6 Setup for the upper bound argument

Recall that an A-sum is S = X1 + · · ·+ XN where the X1, . . . ,XN distributions are independent (but not
identically distributed) and each Xi is supported on the set A = {a1, . . . , ak} where {a1, . . . , ak} ⊂ Z≥0

28



and a1 < · · · < ak (and a1, . . . , ak, N, ε are all given to the learning algorithm in the known-support
setting).

For each Xi we define X′i to be the “zero-moded” variant of Xi, namely X′i = Xi −mode(Xi) where
mode(Xi) ∈ {a1, . . . , ak} is a mode of Xi (i.e. mode(Xi) satisfies Pr[Xi = mode(Xi)] ≥ Pr[Xi = ai′ ]
for all i′ ∈ [k]). We define S′ to be

∑N
i=1 X

′
i. It is clear that S′ + V = S where V is an (unknown) “offset”

in Z. Below we will give an algorithm that learns S′ + V given independent draws from it.
For each i ∈ [N ] the support of random variable X′i is contained in {0,±q1, . . . ,±qK}, where K =

O(k2) and {q1, . . . , qK} is the set of all distinct values achieved by |a` − a`′ |, 1 ≤ ` < `′ ≤ k. As noted
above each X′i has Pr[X′i = 0] ≥ 1/k ≥ 1/K.

To help minimize confusion we will consistently use letters i, j, etc. for dummy variables that range
over 1, . . . , N and a, b, c, d etc. for dummy variables that range over 1, . . . ,K.

We define the following probabilities and associated values:

For i ∈ [N ] and a ∈ [K] : cqa,i = Pr[X′i = ±qa] (5)

For a ∈ [K] : cqa =

N∑
i=1

cqa,i. (6)

We may think of the value cqa as the “weight” of qa in S′.
It is useful for us to view S′ =

∑N
i=1 X

′
i in the following way. Recall that the support of X′i is contained

in {0,±q1, . . . ,±qK}. For i ∈ [N ] we define a vector-valued random variable Yi that is supported on
{0,±e1, . . . ,±eK} by

Pr[Yi = 0] = Pr[X′i = 0] ≥ 1

K
, Pr[Yi = τea] = Pr[X′i = τqa] for τ ∈ {−1, 1}, a ∈ [K]. (7)

We define the vector-valued random variable M =
∑N

i=1 Yi, so we have X′i = (q1, . . . , qK) ·Yi for each i
and S′ = (q1, . . . , qK) ·M. Summarizing for convenient later reference:

X′1, . . . ,X
′
N : independent, each supported in {0,±q1, . . . ,±qK} (8)

S′ = X′1 + · · ·+ X′N : supported in Z (9)

Y1, . . . ,YN : independent, each supported in {0,±e1, . . . ,±eK} (10)

M = Y1 + · · ·+ YN : supported in Zk (11)

S′ = (q1, . . . , qK) ·M. (12)

From this perspective, in order to analyze S′ it is natural to analyze the multinomial random variable M,
and indeed this is what we do in the next section.

Finally, we note that while it suffices to learn S′ of the form captured in (8) and (9) for the K and S′ that
arise from our reduction to this case, our analysis will hold for all K ∈ Z+ and all S′ of this form.

7 Useful structural results when all cqa’s are large

In this section we establish some useful structural results for dealing with a distribution S′ =
∑N

i=1 X
′
i for

which, roughly speaking, all the values cq1 , . . . , cqK (as defined in Section 6) are “large.” More formally,
we shall assume throughout this section that each cqa ≥ R, where the exact value of the parameter R will
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be set later in the context of our learning algorithm in (29) (we note here only that R will be set to a fixed
“large” polynomial in K and 1/ε). Looking ahead, we will later use these results of this section to handle
whatever cqa’s are “large”.

The high-level plan of our analysis is as follows: In Section 7.1 we show that the multinomial distribu-
tion M (recall (11) and (12)) is close in total variation distance to a suitable discretized multidimensional
Gaussian. In Section 7.2 we show in turn that such a discretized multidimensional Gaussian is close to
a vector-valued random variable that can be expressed in terms of independent signed PBDs. Combining
these results, in Section 7.3 we show that S′ is close in variation distance to a weighted sum of signed PBDs.
The lemma stating this, Lemma 39 in Section 7.3, is one of the two main structural results in this section.
The second main structural result in this section, Lemma 40, is stated and proved in Section 7.4. Roughly
speaking, it shows that, for a weighted sum of signed PBDs, it is possible to replace the scaled sum of the
“high-variance” PBDs by a single scaled PBD. This is useful later for learning since it leaves us in a situation
where we only need to deal with scaled PBDs whose variance is “not too high.”

We record some useful notation for this section: for i ∈ [N ], a ∈ [K] and τ ∈ {−1, 1} let pi,a,τ denote

pi,a,τ := Pr[Yi = τea] = Pr[X′i = τqa]. (13)

7.1 From multinomials to discretized multidimensional Gaussians

The result of this subsection, Lemma 35, establishes that the multinomial distribution M is close in total
variation distance to a discretized multidimensional Gaussian.

Lemma 35. Let Y1, . . . ,YN be as in (10), so each Yi has Pr[Yi = 0] ≥ 1/K. For a ∈ [K] define
βa =

∑
1≤i≤N Pr[Yi ∈ {±ea}], and assume that βa = cqa ≥ R for all a ∈ [K]. As in (11) let M =

Y1 + · · · + YN , and let µ̃ = E[M] be the K-dimensional mean of M and Σ̃ be the K × K covariance
matrix Cov(M). Then

(1) Defining σ̃2 to be the smallest eigenvalue of Σ̃, we have that σ̃2 ≥ R/K.

(2) dTV(M,ND(µ̃, Σ̃)) ≤ O(K71/20/R1/20).

Proof. Given part (1), Theorem 18 directly gives the claimed variation distance bound in part (2), so in the
following we establish (1).

Since Y1, . . . ,YN are independent we have that

Σ̃ =
N∑
i=1

Σ̃i, where Σ̃i = Cov(Yi).

Fix i ∈ [N ]. Recalling (13), we have that Σ̃i is the K ×K matrix defined by

(Σ̃i)a,b =

{
(pi,a,1 + pi,a,−1)(1− pi,a,1 − pi,a,−1) + 4pi,a,1pi,a,−1 if a = b

−(pi,a,1 − pi,a,−1)(pi,b,1 − pi,b,−1) if a 6= b.

Hence we have

(Σ̃)a,b =

{∑N
i=1(pi,a,1 + pi,a,−1)(1− pi,a,1 − pi,a,−1) + 4pi,a,1pi,a,−1 if a = b∑N
i=1−(pi,a,1 − pi,a,−1)(pi,b,1 − pi,b,−1) if a 6= b.

(14)
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For later reference (though we do not need it in this proof) we also note that the mean vector µ̃ is defined by

µ̃a =
N∑
i=1

(pi,a,1 − pi,a,−1). (15)

Let δi = Pr[Yi = 0] = 1−pi,1,1−pi,1,−1−· · ·−pi,K,1−pi,K,−1 and observe that by assumption we have
δi ≥ 1/K for all i ∈ [N ]. We lower bound the smallest eigenvalue using the variational characterization.
For any unit vector x in RK , we have

xT · Σ̃ · x =
K∑
a=1

x2
a

(
N∑
i=1

(pi,a,1 + pi,a,−1)(1− pi,a,1 − pi,a,−1) + 4pi,a,1pi,a,−1

)

−
K∑
a=1

∑
b∈[K],b 6=a

xaxb

(
N∑
i=1

(pi,a,1 − pi,a,−1)(pi,b,1 − pi,b,−1)

)
. (16)

Let p′i,a,1 = pi,a,1 + pi,a,−1. Recalling that each pi,a,1, pi,a,−1 ≥ 0, it is not difficult to see that then we have

(16) ≥
K∑
a=1

x2
a

(
N∑
i=1

p′i,a,1(1− p′i,a,1)

)
−

K∑
a=1

∑
b∈[K],b 6=a

|xa| · |xb|

(
N∑
i=1

p′i,a,1p
′
i,b,1

)
, (17)

so for the purpose of lower bounding (16) it suffices to lower bound (17). Rewriting p′i,a,1 as pi,a for
notational simplicity, so now δi = 1− pi,1 − · · · − pi,K ,we have

(17) ≥
K∑
a=1

x2
a

N∑
i=1

pi,a(1− pi,a)−
K∑
a=1

∑
b∈[K],b 6=a

|xa| · |xb|
N∑
i=1

pi,api,b

=
N∑
i=1

 K∑
a=1

pi,a(1− pi,a)x2
a −

K∑
a=1

∑
b∈[K],b 6=a

pi,api,b|xa| · |xb|


=

N∑
i=1

 K∑
a=1

δipi,ax
2
a +

K∑
a=1

pi,ax
2
a

 ∑
b∈[K],b 6=a

pi,b

− K∑
a=1

∑
b∈[K],b 6=a

pi,api,b|xa| · |xb|


=

N∑
i=1

δi K∑
a=1

pi,ax
2
a +

K∑
a=1

∑
b∈[K],b 6=a

(pi,api,bx
2
a − pi,api,b|xa| · |xb|)


=

N∑
i=1

(
δi

K∑
a=1

pi,ax
2
a +

K∑
a=1

∑
b<a

pi,api,b(|xa| − |xb|)2

)

≥
N∑
i=1

δi

K∑
a=1

pi,ax
2
a. (18)

Recalling that δi ≥ 1/K for all i ∈ [N ] and
∑n

i=1 pi,a = βa ≥ R for all a ∈ [K], we get

N∑
i=1

δi

K∑
a=1

pi,ax
2
a ≥

1

K

K∑
a=1

x2
a

N∑
i=1

pi,a ≥
1

K

K∑
a=1

βax
2
a ≥

R

K

K∑
a=1

x2
a =

R

K
,

so σ̃2 ≥ R/K and the lemma is proved.
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7.2 From discretized multidimensional Gaussians to combinations of independent signed
PBDs

The first result of this subsection, Lemma 36, is a technical lemma establishing that the discretized multidi-
mensional Gaussian given by Lemma 35 is close to a vector-valued random variable in which each marginal
(coordinate) is a (±1)-weighted linear combination of independent discretized Gaussians, certain of which
are promised to have large variance.

Lemma 36.

(1) The pair µ̃ ∈ RK , Σ̃ ∈ RK×K , defined in (15) and (14), are such that there exist µa,b ∈ R, 1 ≤ a ≤
b ≤ K, satisfying

µ̃a = µa,a +
∑
c<a

µc,a +
∑
a<d

sign(Σ̃a,d) · µa,d, (19)

and there exist σa,b ∈ R, 1 ≤ a ≤ b ≤ K, such that

σ2
a,b = |Σ̃a,b| = |Σ̃b,a| for a < b and Σ̃a,a = σ2

a,a +
∑
c<a

σ2
c,a +

∑
a<d

σ2
a,d. (20)

Furthermore, for a ∈ [K] we have σ2
a,a ≥ σ2, where we define σ2 := R/K.

(2) Let Ua,b, 1 ≤ a < b ≤ K be discretized Gaussians Ua,b = ND(µa,b, σ
2
a,b) that are all mutually

independent. For a ∈ [K] let Xa be defined as

Xa = Ua,a +
∑
c<a

Uc,a +
∑
a<d

sign(Σ̃a,d) ·Ua,d.

Then

dTV

(
(X1, . . . ,XK),ND(µ̃, Σ̃)

)
≤ K2

σ
=
K5/2

R1/2
.

Proof. We first prove part (1). Existence of the desired µa,b values is immediate since for each a ∈ [K] the
variable µa,a appears in only one equation given by (19) (so we can select arbitrary values for each µa,b with
a < b, and there will still exist a value of µa,a satisfying (19)). The first part of (20) is trivial since for a < b
we take σ2

a,b = |Σ̃a,b| (which of course equals |Σ̃b,a| since the covariance matrix Σ̃ is symmetric). For the
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second part we take σ2
a,a = Σ̃a,a −

∑
c<a σ

2
c,a −

∑
a<d σ

2
a,d which we now proceed to lower bound.

σ2
a,a = Σ̃a,a −

∑
c<a

σ2
c,a −

∑
a<d

σ2
a,d = Σ̃a,a −

∑
b 6=a
|Σ̃b,a|

≥ Σ̃a,a −
∑
b 6=a

N∑
i=1

(pi,a,1 + pi,a,−1)(pi,b,1 + pi,b,−1) (by (14))

=
N∑
i=1

(pi,a,1 + pi,a,−1)

(1− pi,a,1 − pi,a,−1)−
∑
b 6=a

(pi,b,1 + pi,b,−1)

+ 4pi,a,1pi,a,−1

(again by (14))

≥
N∑
i=1

(pi,a,1 + pi,a,−1)

(1− pi,a,1 − pi,a,−1)−
∑
b6=a

(pi,b,1 + pi,b,−1)


=

N∑
i=1

(pi,a,1 + pi,a,−1)

δi +
∑
b6=a

(pi,b,1 + pi,b,−1)−
∑
b6=a

(pi,b,1 + pi,b,−1)

 (by definition of δi)

=

N∑
i=1

δi(pi,a,1 + pi,a,−1) ≥ 1

K

N∑
i=1

(pi,a,1 + pi,a,−1) (since δi ≥ 1
K )

≥ 1

K
βa ≥

R

K
.

With µa,b and σa,b in hand, now we turn to proving part (2) of the lemma. For 1 ≤ a ≤ b ≤ K let U′a,b
be the (non-discretized) univariate Gaussian N (µa,b, σ

2
a,b) that Ua,b is based on, so Ua,b =

⌊
U′a,b

⌉
and the

distributions U′a,b are all mutually independent. For a ∈ [K] we define random variables V′a,a, Va,a as

V′a,a =
∑
c<a

U′c,a +
∑
a<d

sign(Σ̃a,d) ·U′a,d,

Va,a =
∑
c<a

⌊
U′c,a

⌉
+
∑
a<d

⌊
sign(Σ̃a,d) ·U′a,d

⌉
=
∑
c<a

⌊
U′c,a

⌉
+
∑
a<d

sign(Σ̃a,d) ·
⌊
U′a,d

⌉
=
∑
c<a

Uc,a +
∑
a<d

sign(Σ̃a,d) ·Ua,d.

Fix a possible outcome (u′a,b)a<b of (U′a,b)a<b and for each a < b let ua,b =
⌊
u′a,b

⌉
be the corresponding

outcome of Ua,b. For a ∈ [K] let

v′a,a =
∑
c<a

u′c,a +
∑
a<d

sign(Σ̃a,d) · u′a,d,

va,a =
∑
c<a

⌊
u′c,a
⌉

+
∑
a<d

⌊
sign(Σ̃a,d) · u′a,d

⌉
=
∑
c<a

uc,a +
∑
a<d

sign(Σ̃a,d) · ua,d.

Recalling Lemma 15, we have that

dTV(
⌊
U′a,a + v′a,a

⌉
,
⌊
U′a,a

⌉
+ va,a) ≤

K

σ
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for each a ∈ [K], and hence by independence we get that

dTV

(
(
⌊
U′1,1 + v′1,1

⌉
, ...,

⌊
U′K,K + v′K,K

⌉
), (
⌊
U′1,1

⌉
+ v1,1, ...,

⌊
U′K,K

⌉
+ vK,K)

)
≤ K2

σ
.

Averaging over all outcomes of (u′a,b)a<b ← (U′a,b)a<b, we get that

dTV

(
(
⌊
U′1,1 + V′1,1

⌉
, ...,

⌊
U′K,K + V′K,K

⌉
), (
⌊
U′1,1

⌉
+ V1,1, ...,

⌊
U′K,K

⌉
+ VK,K)

)
≤ K2

σ
.

To complete the proof it remains to show that the vector-valued random variable

(
⌊
U′1,1 + V′1,1

⌉
, . . . ,

⌊
U′K,K + V′K,K

⌉
)

is distributed according to ND(µ̃, Σ̃). It is straightforward to verify, using (19) and linearity of expectation,
that E[U′a,a + V′a,a] = µ̃a. For the covariance matrix, we first consider the diagonal terms: we have
Var[U′a,a + V′a,a] = Σ̃a,a by the second part of (20) and independence of the U′a,b distributions. Finally,
for the off-diagonal terms, for a < b we have

Cov(U′a,a + V′a,a,U
′
b,b + V′b,b)

= Cov

(
U′a,a +

∑
c<a

U′c,a +
∑
a<d

sign(Σ̃a,d) ·U′a,d,U′b,b +
∑
c<b

U′c,b +
∑
b<d

sign(Σ̃b,d) ·U′b,d

)
= Cov(sign(Σ̃a,b) ·U′a,b,U′a,b) = sign(Σ̃a,b) ·Var[U′a,b] = sign(Σ̃a,b) · σ2

a,b = Σ̃a,b = Σ̃b,a

as desired.

We would like a variant of Lemma 36 where signed PBDs play the role of discretized Gaussians. This
is given by the following lemma. (Note that the lemma also ensures that every nontrivial signed PBD has
high variance; this will be useful later.)

Lemma 37. Given the µ̃ ∈ RK , Σ̃ ∈ RK×K from Lemma 35 and the µa,b, σa,b and σ2 defined in Lemma
36, there exist signed PBDs Wa,b, 1 ≤ a ≤ b ≤ K, each of which is either trivial (a constant random
variable) or has Var[Wa,b] ≥ σ1/2 = R1/4/K1/4, such that the random variables Sa, a ∈ [K], defined as

Sa = Wa,a +
∑
c<a

Wc,a +
∑
a<d

sign(Σ̃a,d)Wa,d, (21)

satisfy

dTV

(
(S1, . . . ,SK),ND(µ̃, Σ̃)

)
≤ O

(
K2

σ1/4

)
= O

(
K17/8

R1/8

)
.

Proof. Let Ua,b, Xa be as defined in Lemma 36. We “swap out” each discretized Gaussian Ua,b =
ND(µa,b, σ

2
a,b) in Xa for a signed PBD Wa,b as follows: Given 1 ≤ a ≤ b ≤ K,

(I) If σ2
a,b ≥ σ1/2, we define Wa,b to be a signed PBD that has |E[Wa,b]−µa,b| ≤ 1/2 and Var[Wa,b] =

σ2
a,b. (To see that there exists such a signed PBD, observe that we can takeN1 many Bernoulli random

variables each with expectation p, satisfying N1p(1 − p) = σ2
a,b, to exactly match the variance,

and then take an additional N2 many constant-valued random variables (each of which is 1 or −1
depending on whetherN1p is greater or less than µa,b) to get the mean of the signed PBD to lie within
an additive 1/2 of µa,b.)
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(II) If σ2
a,b < σ1/2 we define Wa,b to be a trivial signed PBD that has E[Wa,b] = bµa,be and Var[Wa,b] =

0.

In the above definition all Wa,b’s are independent of each other. We note that Lemma 36 implies that when
b = a the PBD Wa,a has Var[Wa,a] = σ2

a,a ≥ σ2 = R/K � σ1/2, and hence the PBD Wa,a falls into
the “large-variance” Case (I) above.

The random variable Sa defined in Equation (21) is the analogue of Xa from Lemma 36 but with Wa,b

replacing each Ua,b. To establish the variation distance bound, fix a ∈ [K]; we first argue that the variation
distance between Sa and Xa is small. We start by observing that since Var[Wa,a] ≥ σ2, Theorem 16 and
Lemma 15 give

dTV(Wa,a,Ua,a) ≤ O(1/σ), (22)

and moreover Wa,a is O(1/σ)-shift-invariant by Fact 17.
Now consider a c < a such that Wc,a falls into Case (II). By the standard concentration bound for the

Gaussian U′c,a ∼ N (µc,a, σ
2
c,a) on which Uc,a is based, we have that Pr[U′c,a /∈ [µc,a−tσc,a, µc,a+tσc,a]] ≤

2e−t
2/2 for all t > 0. It follows from Claim 38 (stated and justified below) and the O(1/σ)-shift-invariance

of Wa,a that

dTV(Wa,a + Wc,a,Wa,a + Uc,a) ≤ O
(
tσc,a + 1

σ

)
+ 2e−t

2/2.

Selecting t = σ1/4 so that tσc,a + 1 ≤ σ1/4 · σ1/4 + 1 = O(σ1/2) and e−t
2/2 = o(1/σ1/2), we get that

dTV(Wa,a + Wc,a,Wa,a + Uc,a) ≤ O
(

1

σ1/2

)
. (23)

A similar argument holds for each d > a such that Wa,d falls into Case (II), giving

dTV(Wa,a + sign(Σ̃a,d) ·Wa,d,Wa,a + sign(Σ̃a,d) ·Ua,d) ≤ O
(

1

σ1/2

)
. (24)

Finally, for each c < a such that Wc,a falls into Case (I), once again applying Theorem 16 and Lemma 15,
we get

dTV(Wc,a,Uc,a) ≤ O(1/σ1/4), (25)

and similarly for d > a such that Wa,d falls into Case (I) we have

dTV(sign(Σ̃a,d) ·Wa,d, sign(Σ̃a,d) ·Ua,d) ≤ O(1/σ1/4). (26)

Combining (22—25) and recalling the definitions of Sa and Xa, by the triangle inequality for each
a ∈ [K] we have

dTV(Sa,Xa) ≤ O
(
K

σ1/4

)
.

Finally, another application of the triangle inequality gives

dTV((S1, . . . ,SK), (X1, . . . ,XK)) ≤ O
(
K2

σ1/4

)
,

which with Lemma 36 gives the claimed bound.

The following claim is an easy consequence of the definition of shift-invariance:

Claim 38. Let A be an integer random variable that is α-shift-invariant, and let B be an integer random
variable such that Pr[B /∈ [u, u + r]] ≤ δ for some integers u, r. Then for any integer r′ ∈ [u, u + r] we
have dTV(A + B,A + r′) ≤ αr + δ.
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7.3 S′ is close to a shifted weighted sum of signed PBDs

Recall that S′ = (q1, . . . , qK) ·M is as defined in (12). Combining Lemmas 35 and 37, and taking the
dot-product with (q1, . . . , qK) to pass from M to S′, we get that the variation distance between S′ =
(q1, . . . , qK)·M and (q1, . . . , qK)·(S1, . . . ,SK) is at mostO(K71/20/R1/20). We can express (q1, . . . , qK)·
(S1, . . . ,SK) as

K∑
a=1

qa

(
Wa,a +

∑
c<a

Wc,a +
∑
a<d

sign(Σ̃a,d)Wa,d

)

=
K∑
a=1

qaWa,a +
∑

1≤a<b≤K
(qb + sign(Σ̃a,b) · qa)Wa,b.

Recalling that each Wa,b is either a constant random variable or a signed PBD with variance at least σ1/2 =
R1/4/K1/4, that each Var[Wa,a] ≥ σ2 > σ1/2, and that all of the distributions Wa,a,Wa,b are mutually
independent, we get the following result showing that cq1 , . . . , cqK ≥ R implies that S′ is close to a weighted
sum of signed PBDs.

Lemma 39. Assume that cq1 , . . . , cqK ≥ R. Then there is an integer V ′, a subset of pairs A ⊆ {(a, b) : 1 ≤
a < b ≤ K}, and a set of sign values {τa,b}(a,b)∈A where each τa,b ∈ {−1, 1}, such that dTV(S′,B) =

O(K71/20/R1/20), where B is a shifted sum of signed PBDs

B = V ′ +
K∑
a=1

qaWa,a +
∑

(a,b)∈A

(qb + τa,b · qa)Wa,b (27)

in which all the Wa,a and Wa,b distributions are independent signed PBDs with variance at leastR1/4/K1/4.

7.4 A useful limit theorem: Simplifying by coalescing multiple large-variance scaled PBDs
into one

Lemma 39 leads to consideration of distributions of the form T = r1T1 + · · ·+ rDTD, where T1, . . . ,TD

are independent signed large-variance PBDs. Let us consider for a moment the case that D = 2, so that
T = r1T1 + r2T2. (As we will see, to handle the case of general D it suffices to consider this case.)
Since gcd(r1, r2) divides every outcome of T, we may assume that gcd(r1, r2) = 1 essentially without loss
of generality. When gcd(r1, r2) = 1, if the variance of T2 is large enough relative to r1, then the gaps
between multiples of r1 are filled in, and T is closely approximated by a single PBD. This is helpful for
learning, because it means that cases in which Var[T2] is this large are subsumed by cases in which there
are fewer PBDs. This phenomenon is the subject of Lemma 40.

Lemma 40. Let T = r1T1 + · · ·+rDTD where T1, . . . ,TD are independent signed PBDs and r1, . . . , rD
are nonzero integers with the following properties:

• Var[r1T1] ≥ 1
D Var[T];

• For each a ∈ {2, . . . , D} we have Var[Ta] ≥ max{σ2
min,

r1
ε′ }, where σ2

min ≥ (1/ε′)8.

Let r′ = gcd(r1, . . . , rD). Then there is a signed PBD T′ with Var[r′T′] = Var[T] such that

dTV

(
T, r′T′

)
≤ O(Dε′).
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Proof. Reduction to the case that D = 2. We begin by showing that the case D = 2 implies the general
case by induction, and thus it suffices to prove the D = 2 case. Let us suppose that we have proved the
lemma in the D = 2 case and in the D = t − 1 case; we now use these to prove the D = t case. By the
D = 2 case, there is an absolute constant C > 0 and a signed PBD T12 such that we have

dTV(r1T1 + r2T2, gcd(r1, r2)T12) ≤ Cε′ and Var[r1T1 + r2T2] = Var[gcd(r1, r2)T12]. (28)

Since for all a = 3, ..., t we have

Var[Ta] ≥
r1

ε′
≥ gcd(r1, r2)

ε′
,

the D = t − 1 case implies that, if T12,T3, ...,TT are mutually independent, then there is a PBD T′ such
that

dTV

(
gcd(r1, r2)T12 +

t∑
a=3

raTa, r
′T′

)
≤ C(t− 1)ε′

and

Var[r′T′] = Var

[
gcd(r1, r2)T12 +

t∑
a=3

raTa

]
= Var[gcd(r1, r2)T12] + Var

[
t∑

a=3

raTa

]
,

which, combined with (28), completes the proof of the D = t case. We thus subsequently focus on the
D = 2 case.

Reduction to the case that r′ = 1. Next, we note that we may assume without loss of generality
that r′ = gcd(r1, r2) = 1, since dividing each ra by r′ scales down Var[r1T1 + r2T2] by (r′)2 and
dTV (r1T1 + r2T2, r

′T′) is easily seen to equal dTV ((r1/r
′)T1 + (r2/r

′)T2, T
′) .

Main proof of the D = 2, r′ = 1 case. Recall that T = r1T1 + r2T2. Let µ denote E[T], and let σ2

denote Var[T].
As in [GMRZ11], we will use shift-invariance to go from bounds on dK to bounds on dTV. Our first

step is to give a bound on dK. For this we will use the following well-known Berry-Esseen-like inequality,
which can be shown using Lemma 12, Theorem 16 and Gaussian anti-concentration:

Lemma 41. There is a universal constant c such

dK(TP (µ, σ2), N(µ, σ2)) ≤ c

σ

for all µ and all σ2 > 0.

Now we are ready for our bound on the Kolmogorov distance:

Lemma 42. dK(T, TP (µ, σ2)) ≤ O(1/σmin).

Proof: Lemma 12 implies that for a = 1, 2 we have

dK(Ta, TP (µ(Ta), σ(Ta)
2)) ≤ O(1/σmin),

which directly implies
dK(raTa, raTP (µ(Ta), σ(Ta)

2)) ≤ O(1/σmin).
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Lemma 41 and the triangle inequality then give

dK(raTa, N(raµ(Ta), r
2
aσ(Ta)

2)) ≤ O(1/σmin),

and applying Lemma 41 and the triangle inequality again, we get

dK(raTa, TP (raµ(Ta), r
2
aσ(Ta)

2)) ≤ O(1/σmin).

The lemma follows from the fact that dK(X + Y,X′ + Y′) ≤ dK(X,X′) + dK(Y,Y′) when X,Y are
independent and X′,Y′ are independent.

Facts 7 and 17 together imply that T is O(1/σmin)-shift invariant at scales r1 and r2, but, to apply
Lemma 9, we need it to be shift-invariant at a smaller scale. Very roughly, we will do this by effecting a
small shift using a few shifts with steps with sizes in {r1, r2}. The following generalization of Bézout’s
Identity starts to analyze our ability to do this.

Lemma 43. Given any integer 0 ≤ u < r1 · r2, there are integers v1, v2 such that u = v1 · r1 + v2 · r2 with
|v1| < r2, |v2| < r1.

Proof. By Bézout’s Identity, there exist x1 and x2 with |x1| < r2 and |x2| < r1 such that

x1r1 + x2r2 = 1.

Let y1 be obtained by adding r2 to x1 if x1 is negative, and otherwise just taking x1, and define y2 similarly;
i.e., y1 = x1 + r21[x1 < 0] and y2 = x2 + r11[x2 < 0]. Then

y1r1 + y2r2 = 1 mod (r1r2)

and 0 ≤ y1 < r2 and 0 ≤ y2 < r1. Thus

uy1r1 + uy2r2 = u mod (r1r2).

This in turn implies that
u = uy2r2 mod r1 and u = uy1r1 mod r2,

so if z1 ∈ {0, 1, . . . , r2 − 1} and z2 ∈ {0, 1, . . . , r1 − 1} satisfy z1 = uy1 mod r2 and z2 = uy2 mod r1,
we get

(z1r1 + z2r2) = u mod r1

and
(z1r1 + z2r2) = u mod r1.

By the Chinese Remainder Theorem, z1r1 + z2r2 = u mod (r1r2). Furthermore, as 0 ≤ z1 < r2 and
0 ≤ z2 < r1, we have 0 ≤ z1r1 + z2r2 < 2r1r2. If z1r1 + z2r2 < r1r2, then we are done; we can set
v1 = z1 and v2 = z2. If not, either z1 > 0 or z2 > 0. If z1 > 0, setting v1 = z1 − r2 and v2 = z2 makes
z1r1 + z2r2 = z1r1 + z2r2 − r1r2 = u, and the corresponding modification of z2 works if z2 > 0.

Armed with Lemma 43, we are now ready to work on the “local” shift-invariance of T. The following
more general lemma will do the job.

Lemma 44. Let X,Y be independent integer random variables where X is α-shift-invariant at scale 1
and Y is β-shift-invariant at scale 1. Let Z = r1 · X + r2 · Y. Then for any positive integer d we have
dTV(Z,Z + d) ≤ r2α+ r1β + min

{
d
r1
α, dr2β

}
.
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Proof. Note that d = s · r1 · r2 + z where 0 ≤ z < r1 · r2, 0 ≤ s ≤ d/(r1 · r2), and s is an integer.
By using Lemma 43, we have that d = s · r1 · r2 + v1 · r1 + v2 · r2 where |v1| < r2 and |v2| < r1, so
d = (s · r2 + v1) · r1 + v2 · r2. Note that

|s · r2 + v1| ≤ |v1|+ s · r2 ≤ (r2 − 1) + d/r1.

Thus, d = t1 · r1 + t2 · r2 where t1, t2 are integers and |t1| ≤ r2 − 1 + d/r1 and |t2| ≤ (r1 − 1). Hence we
have

dTV(Z,Z + d) = dTV(r1 ·X + r2 ·Y, r1 ·X + r2 ·Y + t1 · r1 + t2 · r2)

≤ |t1| · α+ |t2| · β

≤
(
d

r1
+ r2

)
· α+ r1 · β.

By swapping the roles of r1 and r2 in the above analysis, we get the stated claim.

Now we have everything we need to prove Lemma 40 in the case that D = 2.
Let V = TP (µ, σ2). Let Ud denote the uniform distribution over {0, 1, . . . , d − 1}, where d will be

chosen later. We will bound dTV(T + Ud,V + Ud), dTV(T,T + Ud), and dTV(V,V + Ud), and apply
the triangle inequality via

dTV(T,V) ≤ dTV(T,T+Ud)+dTV(T+Ud,V) ≤ dTV(T,T+Ud)+dTV(T+Ud,V+Ud)+dTV(V,V+Ud).

First, recalling that T = r1 · T1 + r2 · T2 and that (by Fact 17) T1 is O(1/σ(T1))-shift-invariant at
scale 1 and T2 is O(1/σ(T2))-shift-invariant at scale 1, we have that

dTV(T,T + Ud) ≤ Ex∼Ud
[dTV(T,T + x)]

≤ max
x∈supp(Ud)

dTV(T,T + x)

≤ O

(
r1

σ(T2)
+

r2

σ(T1)
+ min

{
d

r1σ(T1)
,

d

r2σ(T2)

})
(by Lemma 44)

≤ O

(
r1

σ(T2)
+

d

r1σ(T1)

)
(since r1σ(T1) > r2σ(T2))

≤ O(ε′) +O

(
d

r1σ(T1)

)
,

since σ(T2) > r1/ε
′.

Next, Fact 17 implies that V is O
(

1
r1σ(T1)

)
-shift-invariant, so repeated application of the triangle

inequality gives

dTV(V,V + Ud) ≤ O
(

d

r1σ(T1)

)
.

Finally, we want to bound dTV(T + Ud,V + Ud). Observe that Pr[|T − µ| < σ/ε′] and Pr[|V −
E[V]| ≤ σ/ε′] are both 2−poly(1/ε′). Hence applying Lemma 9 and recalling that r1σ(T1) > r2σ(T2), we
get

dTV(T + Ud,V + Ud) ≤ o(ε′) +O
(√

(1/σmin) · ((r1σ(T1))/ε′) · (1/d)
)
.
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Combining our bounds, we get that

dTV(T,V) ≤ O(ε′) +O

(√
(1/σmin) · ((r1σ(T1))/ε′) · (1/d) +

d

r1σ(T1)

)
.

Taking d = r1σ(T1)/(σminε
′)1/3, we get

dTV(T,V) ≤ O(ε′) + 1/(σminε
′)1/3 = O(ε′)

since (1/σmin)2 > (1/ε′)8.
Finally, let T′ be a signed PBD that has |E[T′] − µ| ≤ 1/2 and Var[T′] = σ2. (The existence of

such a signed PBD can be shown as in (I) in the proof of Lemma 37.) Lemmas 12 and 13 imply that
dTV(TMIX′ ,V) ≤ 1/σ(V) ≤ ε′, completing the proof.

8 The learning result: Learning when |A| ≥ 4

With the kernel-based learning results from Section 5 and the structural results from Section 7 in hand, we
are now ready to learn a distribution S∗ that is cε-close to a distribution S = S′ + V , where S′ is described
in Section 6. We give two distinct learning algorithms, one for each of two mutually exclusive cases. The
overall learning algorithm works by running both algorithms and using the hypothesis selection procedure,
Proposition 25, to construct one final hypothesis.

The high-level idea is as follows. In Section 8.1 we first easily handle a special case in which all the
cqa values are “small,” essentially using a brute-force algorithm which is not too inefficient since all cqa’s
are small. We then turn to the remaining general case, which is that some cqa are large while others may be
small.

The idea of how we handle this general case is as follows. First, via an analysis in the spirit of the
“Light-Heavy Experiment” from [DDO+13], we approximate the distribution S′ + V as a sum of two
independent distributions Slight + Sheavy where intuitively Slight has “small support” and Sheavy is a 0-
moded A-sum supported on elements all of which have large weight (this is made precise in Lemma 45).
Since Slight has small support, it is helpful to think of Slight + Sheavy as a mixture of shifts of Sheavy.
We then use structural results from Section 7 to approximate this distribution in turn by a mixture of not-
too-many shifts of a weighted sum of signed PBDs, whose component independent PBDs satisfy a certain
technical condition on their variances (see Corollary 47). Finally, we exploit the kernel-based learning tools
developed in Section 5 to give an efficient learning algorithm for this mixture distribution. Very roughly
speaking, the final log log ak sample complexity dependence (ignoring other parameters such as ε and k)
comes from making O(log ak) many “guesses” for parameters (variances) of the weighted sum of signed
PBDs; this many guesses suffice because of the technical condition alluded to above.

We now proceed to the actual analysis. Let us reorder the sequence q1, . . . , qK so that cq1 ≤ . . . ≤ cqK .
Let us now define the sequence t1, . . . , tK as ta = (1/ε)2a . Define the “largeness index” of the sequence
cq1 ≤ . . . ≤ cqK as the minimum ` ∈ [K] such that cq` > t`, and let `0 denote this value. If there is no
` ∈ [K] such that cq` > t`, then we set `0 = K + 1.

We first deal with the easy special case that `0 = K + 1 and then turn to the main case.

8.1 Learning when `0 = K + 1

Intuitively, in this case all of cq1 , . . . , cqK are “not too large” and we can learn via brute force. More precisely,
since each cqa ≤ 1/ε2K , in a draw from S′ the expected number of random variables X′1, . . . ,X

′
N that take a
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nonzero value is at mostK/ε2K , and a Chernoff bound implies that in a draw from S′ we have Pr[more than
poly(K/ε2K ) of the X′i’s take a nonzero value] ≤ ε. Note that for anyM , there are at mostMO(K) possible
outcomes for S = S′ + V that correspond to having at most M of the X′i’s take a nonzero value. Thus it
follows that in this case the random variable S′ (and hence S) is ε-essentially supported on a set of size at
most MO(K) = (K/ε2K )O(K). Thus S∗ is O(ε)-essentially supported on a set of the same size. Hence the

algorithm of Fact 24 can be used to learn S∗ to accuracy O(ε) in time poly(1/εO(2K)) = poly(1/ε2O(k2)
).

8.2 Learning when `0 ≤ K.

Now we turn to the main case, which is when `0 ≤ K. The following lemma is an important component
of our analysis of this case. Roughly speaking, it says that S′ is close to a sum of two independent random
variables, one of which (Slight) has small support and the other of which (Sheavy) is the sum of 0-moded
random variables that all have large weight.

Lemma 45. Suppose that `0 ≤ K. Then there exists S̃ = Sheavy +Slight such that dTV(S̃,S′) ≤ O(ε) and
the following hold:

1. Sheavy and Slight are independent of each other;

2. The random variable Slight is Slight =
∑

1≤b<`0 qb · Sb where for each 1 ≤ b < `0, Sb is supported
on the set [−(1/ε) · tcutoff , (1/ε) · tcutoff ]∩Z where tcutoff = (t1 + . . .+ t`0−1) and the {Sb} are not
necessarily independent of each other;

3. The random variable Sheavy is the sum of 0-moded random variables supported in {0,±q`0 , . . . ,
±qK}. Further, for all b ≥ `0, we have cqb,heavy >

t`0
2 where cqb,heavy is defined as in Section 6 but

now with respect to Sheavy rather than with respect to S′.

Proof. The proof follows the general lines of the proof of Theorem 4.3 of [DDO+13]. LetL = {±q1, . . . ,±q`0−1}
and H = {0,±q`0 , . . . ,±qK}. (It may be helpful to think of L as the “light” integers, and H as “heavy”
ones.) We recall the following experiment that can be used to make a draw from S′, referred to in [DDO+13]
as the “Light-Heavy Experiment”:

1. [Stage 1]: Informally, sample from the conditional distributions given membership in L. Specifically,
independently we sample for each i ∈ [N ] a random variable X′i ∈ L as follows:

for each b ∈ L, X′i = b,with probability
Pr[X′i = b]

Pr[X′i ∈ L]
;

i.e. X′i is distributed according to the conditional distribution of X′i, conditioning on X′i ∈ L. In the
case that Pr[X′i ∈ L] = 0 we define X′i = 0 with probability 1.

2. [Stage 2]: Sample analogously for H. Independently we sample for each i ∈ [N ] a random variable
X
′
i ∈ H as follows:

for each b ∈ H, X
′
i = b,with probability

Pr[X′i = b]

Pr[X′i ∈ H]
;

i.e. X′i is distributed according to the conditional distribution of X′i, conditioning on X′i ∈ H.
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3. [Stage 3]: Choose which X′i take values in L: sample a random subset L ⊆ [N ], by independently
including each i into L with probability Pr[X′i ∈ L].

After these three stages we output
∑

i∈LX′i+
∑

i/∈LX
′
i as a sample from S′, where

∑
i∈LX′i represents

“the contribution of L” and
∑

i/∈LX
′
i “the contribution of H.” Roughly, Stages 1 and 2 provide light and

heavy options for each X′i, and Stage 3 chooses among the options. We note that the two contributions are
not independent, but they are independent conditioned on the outcome of L. Thus we may view a draw of
S′ as a mixture, over all possible outcomes L of L, of the distributions

∑
i∈LX

′
i +
∑

i/∈LX
′
i; i.e. we have

S′ = MixL←L(
∑

i∈LX
′
i +
∑

i/∈LX
′
i). This concludes the definition of the Light-Heavy Experiment.

Let tcutoff = t1 + . . .+ t`0−1. Note that E[|L|] ≤ tcutoff . Let Bad denote the set of all outcomes L of L
such that |L| > (1/ε) · tcutoff . A standard application of the Hoeffding bound implies that Pr[L ∈ Bad] =
Pr[|L| > (1/ε) · tcutoff ] ≤ 2−Ω(1/ε). It follows that if we define the distribution S′′ to be an outcome of
the Light-Heavy Experiment conditioned on L /∈ Bad, i.e. S′′ = MixL←L | L/∈Bad(

∑
i∈LX

′
i +
∑

i/∈LX
′
i),

we have that dTV(S′′,S′) ≤ 2−Ω(1/ε). Consequently it suffices to show the existence of S̃ satisfying the
properties of the lemma such that dTV(S̃,S′′) ≤ ε.

We will now show that for any L1, L2 /∈ Bad, the random variables SLj =
∑

i 6∈Lj X
′
i (for j ∈ {1, 2})

are close to each other in total variation distance. (If we think of L1 and L2 as different possibilities for the
final step in the process of sampling from the distribution of S′, recall that the values of X′i are always inH
– loosely speaking, during the first sample from S′ the values of X′i for i ∈ L1 are not used, and during the
second sample, the values for i ∈ L2 are not used.) Let Lunion = L1 ∪ L2. Note that by definition

|L2 \ L1|, |L1 \ L2| ≤ (1/ε) · tcutoff .

Define
SLunion =

∑
i/∈Lunion

X
′
i = SL1 −

∑
i∈L2−L1

X
′
i = SL2 −

∑
i∈L1−L2

X
′
i.

Choose b ≥ `0. We have that

dshift,qb(X
′
i) = 1−

∑
j

(min{Pr[X
′
i = j],Pr[X

′
i = j + qb})

≤ 1−min{Pr[X
′
i = 0],Pr[X

′
i = qb]} −min{Pr[X

′
i = −qb],Pr[X

′
i = 0]}

= 1−Pr[X
′
i = −qb]−Pr[X′i = qb],

since X′i is 0-moded. By Corollary 23, this implies that

dshift,qb(SLunion) ≤ O(1)√∑
i/∈Lunion

Pr[X
′
i = ±qb]

≤ O(1)√
cqb − |Lunion|

≤

√
2

t`0
.

Here the penultimate inequality uses the fact that∑
i/∈Lunion

Pr[X
′
i = ±qb] =

∑
i∈[n]

Pr[X
′
i = ±qb]−

∑
i∈Lunion

Pr[X
′
i = ±qb] ≥ cqb − |Lunion|.

The last inequality uses that

cqb − |Lunion| ≥ cqb − |L1| − |L2| ≥ cqb − 2 · (1/ε) · tcutoff ≥ tb − 2 · (1/ε) · tcutoff ≥
t`0
2
.
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As each of the summands in the sum
∑

i∈L2\L1
X
′
i is supported on the set {0,±q`0 , . . . ,±qK}, viewing

SL1 as a mixture of distributions each of which is obtained by shifting SLunion at most |L2 \L1|many times,
each time by an element of {0,±q`0 , . . . , qK}, we immediately obtain that

dTV(SLunion ,SL1) ≤ |L2 \ L1| ·

√
2

t`0
≤ 2(1/ε) · tcutoff ·

√
2

t`0
≤ O(ε).

Choose any L∗ /∈ Bad arbitrarily, and define Sheavy :=
∑

i 6∈L∗X
′
i. By the above analysis, for any

L′ /∈ Bad it holds that dTV(
∑

i 6∈L′X
′
i,Sheavy) = O(ε). Thus, for any outcome L /∈ Bad, we have

dTV(
∑

i∈LX
′
i +
∑

i/∈LX
′
i,
∑

i∈LX
′
i + Sheavy) = O(ε). Define Slight := MixL←L | L/∈Bad

∑
i∈LX

′
i.

We now verify that the above-defined Sheavy and Slight indeed satisfies the claimed properties. Note that
for each L /∈ Bad,

∑
i∈LX

′
i is supported on the set∑
b≤`0

qb · Sb : Sb ∈ [−(1/ε) · tcutoff , (1/ε) · tcutoff ]

 ,

so the second property holds as well. Likewise, Sheavy is a sum of 0-moded random variables with support in
{0,±q`0 , . . . ,±qK}. Note that we have already shown that

∑
i/∈L∗ Pr[X

′
i = ±qb] ≥ t`0/2 , giving the third

property. Finally, combining the fact that Pr[L ∈ Bad] ≤ ε with dTV(
∑

i∈LX
′
i +

∑
i/∈LXi,

∑
i∈LXi +

Sheavy) = O(ε), we obtain the claimed variation distance bound dTV(S̃,S′) ≤ O(ε), finishing the proof.

With Lemma 45 in hand, we now apply Lemma 39 to the distribution Sheavy with

R = K25/ε32. (29)

This gives the following corollary:

Corollary 46. The distribution S′ is δ-close in total variation distance to a distribution S′′ = S′light +∑K
a=`0

qa ·Wa,a +
∑

(a,b)∈A(qb + τa,b · qa)Wa,b where δ = O(K71/20 · ε1/20) and

1. A ⊆ {(a, b) : `0 ≤ a < b ≤ K}, τa,b ∈ {−1, 1}, and Wa,a, Wa,b are signed PBDs.

2. Var[Wa,a], Var[Wa,b] ≥ (R/K)−1/4 > K6/ε8,

3. The random variables S′light, Wa,a and Wa,b are all independent of each other, and

4. S′light is supported on a set of cardinality M ≤ (2tK/ε)
K .

Proof. By Lemma 45 S′ is O(ε)-close to S̃ = Sheavy +Slight where the decomposition of S̃ is as described
in that lemma. Applying Lemma 39, we further obtain that Sheavy is δ = O(K71/20 · ε1/20)-close to a
distribution of the form

K∑
a=`0

qa ·Wa,a +
∑

(a,b)∈A

(qb + τa,b · qa)Wa,b + V ′,

with Wa,a and Wa,b satisfies the conditions stated in the corollary. Defining S′light = V +Slight will satisfy
all the required conditions. We note that the size of the support of S′light is the same as the size of the
support of Slight, so applying item (2) of Lemma 45, we get that the size of the support of S′light is bounded
by (2tK/ε)

K .
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Let us look at the structure of the distribution

S′′ = S′light +
K∑
a=`0

qa ·Wa,a +
∑

(a,b)∈A

(qb + τa,b · qa)Wa,b.

For (a, b) ∈ A let q(a,b) denote qb+τa,b ·qa, and letB denote the setB = {`0, . . . ,K}∪A. For anyB′ ⊆ B,
let us write gcd(B′) to denote gcd({qα}α∈B). Let α∗ denote the element of B for which Var[qα∗ ·Wα∗ ] is
largest (breaking ties arbitrarily) and let MIX denote the following subset of B:

MIX = {α∗} ∪ {α ∈ B : Var[Wα] ≥ max{1/ε8, qα∗/ε}. (30)

By applying Lemma 40 to the distribution
∑

α∈MIX qα ·Wα, with its σ2
min set to K6/ε8 and its ε′ set to ε,

noting that |B|ε′ = O(K2ε) = o(K71/20 · ε1/20) we obtain the following corollary:

Corollary 47. The distribution S′ is δ′ = O(K71/20·ε1/20)-close in total variation distance to a distribution
S(2) of the following form, where ∅ ( MIX ⊂ B is as defined in (30):

S(2) = S′light + qMIX · SMIX +
∑

qα∈B\MIX

qα · Sα,

where qMIX = gcd(MIX) and the following properties hold:

1. The random variables S′light, SMIX and {Sα}qα∈B\MIX are independent of each other.

2. S′light is supported on a set of at most M integers, where M ≤ (2tK/ε)
K .

3. SMIX and {Sα}qα∈B\MIX are signed PBDs such that for all qα ∈ B \ MIX, we have K6/ε8 ≤
Var[Sα] ≤ r/ε, where r = maxqα∈B |qα|. Moreover Var[SMIX] ≥ K6/ε8.

4. Var[qMIX · SMIX] = c ·
(
Var[qMIX · SMIX] +

∑
qα∈B\MIX Var[qα · Sα]

)
for some c ∈ [ 1

K2 , 1].

The above corollary tells us that our distribution S′ is close to a “nicely structured” distribution S(2); we
are now ready for our main learning result, which uses kernel-based tools developed in Section 5 to learn
such a distribution. The following theorem completes the `0 ≤ K case:

Theorem 48. There is a learning algorithm and a positive constant c with the following properties: It is
given as input N , values ε, δ > 0, and integers 0 ≤ a1 < · · · < ak, and can access draws from an

unknown distribution S∗ that is cε-close to a {a1, . . . , ak}-sum S. The algorithm runs in time (1/ε)2O(k2) ·
(log ak)

poly(k) and uses (1/ε)2O(k2) · log log ak samples, and has the following property: Suppose that for
the zero-moded distribution S′ such that S′ + V = S (as defined in Section 6), the largeness index `0 (as
defined at the beginning of this section) is at mostK (again recall Section 6). Then with probability 1−o(1)
the algorithm outputs a hypothesis distribution H with dTV(H,S) ≤ O(K71/20 · ε1/20).

(To obtain an O(ε)-accurate hypothesis, simply run the learning algorithm with its accuracy parameter
set to ε′ = ε20/K71.)
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Proof. The high level idea of the algorithm is as follows: The algorithm repeatedly samples two points
from the distribution S∗ and, for each pair, uses those two points to guess (approximately) parameters of the
distribution

Spure := qMIX · SMIX +
∑

qα∈B\MIX

qα · Sα

from Corollary 47. The space of possible guesses will be of size (1/ε)2O(k2) · (log ak)
poly(k), which leads

to a poly(2k
2
, log(1/ε)) · log log ak factor in the sample complexity by Corollary 26. For each choice of

parameters in this space, Lemma 34 allows us to produce a candidate hypothesis distribution (this lemma
leads to a kpoly(k)/ε2O(k)

factor in the sample complexity); by the guarantee of Lemma 34, for the (approx-
imately) correct choice of parameters the corresponding candidate hypothesis distribution will be close to
the target distribution S′. Given that there is a high-accuracy candidate hypothesis distribution in the pool of
candidates, by Corollary 26, the algorithm of that corollary will with high probability select a high-accuracy
hypothesis distribution H from the space of candidates.

We now give the detailed proof. To begin, the algorithm computes K and the values q1, . . . , qK . It
guesses an ordering of q1, . . . , qK such that cq1 ≤ · · · ≤ cqK (K! = 2poly(k) possibilities), guesses the value
of the largeness index `0 (O(K) = poly(k) possibilities), guesses the subset A ⊆ {(a, b) : `0 ≤ a < b ≤
K} and the associated bits (τa,b)(a,b)∈A from Corollary 46 (2poly(k) possibilities) , and guesses the subset
MIX ⊆ B from Corollary 47 (2poly(k) possibilities). The main portion of the algorithm consists of the
following three steps:

First main step of the algorithm: Estimating the variance of S(2). In the first main step, the algorithm

constructs a space of 1/ε2O(k2)
many guesses, one of which with very high probability is a multiplicatively

accurate approximation of
√
Var[Spure]. This is done as follows: the algorithm makes two independent

draws from S∗. Since S∗ is cε-close to S = S′+V , by Corollary 47, with probability 1−O(K71/20 · ε1/20)
these two draws are distributed as two independent draws from S(2). Let us write these two draws as
s(j) = s

(j)
light + s

(j)
pure where j ∈ {1, 2} and s(j)

light ∼ Slight and s(j)
pure ∼ Spure (where s(1)

light, s
(1)
pure, s(2)

light,

s
(2)
pure are all independent draws). By part (2) of Corollary 47, with probability at least 1/|Slight| ≥ 1/M ≥

(ε/2tK)K = ε2O(k2)
, it is the case that s(1)

light = s
(2)
light. In that event, with probability at least 1/2poly(K), we

have
1

2
·
√
Var[Spure] ≤ |s(2) − s(1)| ≤ 2 ·

√
Var[Spure]. (31)

To see this, observe that since each of the O(K2) independent constituent PBDs comprising Spure has
variance at least K6, for each one with probability at least 1

Θ(K2)
the difference between two independent

draws will lie between (1 − 1
Θ(K2)

) and (1 + 1
Θ(K2)

) times the square root of its variance. If this happens

then we get (31). By repeating 2poly(k) · ε2O(k2)
times, the algorithm can obtain 2poly(k)/ε2O(k2)

many
guesses, one of which will, with overwhelmingly high probability, be a quantity γpure that is a multiplicative
2-approximation of

√
Var[Spure].

Second main step of the algorithm: Gridding in order to approximate variances. Consider the set J
defined as

J =

1+log(K)⋃
j=−1

{2j · γpure/qMIX}.

Given that γpure is within a factor of two of
√
Var[Spure] (by (31)) and given part (4) of Corollary 47, it

is easy to see that there is an element γMIX ∈ J such that γMIX is within a multiplicative factor of 2 of
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√
Var[SMIX]. Likewise, for each α ∈ B \MIX, define the set Jqα as

Jqα =

1+log(
√

max{1/ε8,r/ε})⋃
j=−1

{2j · (ε ·K)−1/4/qα},

where, as in Corollary 47, r = maxqα∈B |qα|. By part (3) of Corollary 47, for each qα ∈ B \ MIX
there is an element γqα ∈ Jqα such that γqα is within a multiplicative factor of two of Var[Sqα ]. These
elements of J and of Jqα are the guesses for the values of

√
Var[SMIX] and of

√
Var[Sqα ] that are used

in the final main step described below. We note that the space of possible guesses here is of size at most
O(log k) · (log(ak/ε))

poly(k).

Third main step of the algorithm: Using guesses for the variances to run the kernel-based learning
approach. For each outcome of the guesses described above (denote a particular such outcome by γ; note
that a particular outcome for γ comprises an element of J and an element of Jqα for each α ∈ B \MIX), let
us define the distribution ZMIX,γ to be uniform on the set [−(cε · γMIX)/K, (cε · γMIX)/K] ∩ Z and Zqα,γ
to be uniform on the set [−(cε · γqα)/K, (cε · γqα)/K] ∩Z, where c is the hidden constant in the definition
of cj in Lemma 34. Applying Lemma 34, we can draw (K/ε)K · m2 · log(m/δ) samples from S, where

m = (1/ε)2O(k2) ≥ (2tK/ε)
K ≥ |Slight|, and we get a hypothesis Hγ resulting from this outcome of the

guesses and this draw of samples from S. The guarantee of Lemma 34 ensures that for the outcome γ all of
whose components are factor-of-two accurate as ensured in the previous step, the resulting hypothesis Hγ

satisfies dTV(Hγ ,S
′) ≤ O(K71/20 · ε1/20 + ε) = O(K71/20 · ε1/20) with probability at least 1− δ. Finally,

an application of Corollary 26 concludes the proof.

9 Learning {a1, a2, a3}-sums

In this section we show that when |A| = 3 the learning algorithm can be sharpened to have no dependence
on a1, a2, a3 at all. Recall Theorem 1:

Theorem 1 (Learning when |A| = 3 with known support). There is an algorithm and a positive constant
c with the following properties: The algorithm is given N , an accuracy parameter ε > 0, distinct values
a1 < a2 < a3 ∈ Z≥0, and access to i.i.d. draws from an unknown random variable S∗ that is cε-
close to an {a1, a2, a3}-sum S. The algorithm uses poly(1/ε) draws from S∗, runs in poly(1/ε) time, and
with probability at least 9/10 outputs a concise representation of a hypothesis distribution H such that
dTV(H,S∗) ≤ ε.

The high-level approach we take follows the approach for general k; as in the general case, a sequence of
transformations will be used to get from the initial target to a “nicer” distribution (whose exact form depends
on the precise value of the “largeness index”) which we learn using the kernel-based approach. (Lemmas 49
and 50, which establish learning results for distributions in two of these nicer forms, are deferred to later
subsections.) Intuitively, the key to our improved independent-of-a3 bound is a delicate analysis that care-
fully exploits extra additive structure that is present when k = 3, and which lets us avoid the “gridding”
over O(log ak) many multiplicatively spaced guesses for variances that led to our log log ak dependence in
the general-k case.

To describe this additive structure, let us revisit the framework established in Section 6, now specializing
to the case k = 3, so S is an {a1, a2, a3}-sum with a1 < a2 < a3. We now have that for each i ∈ [N ]
the support of the zero-moded random variable X′i is contained in {0} ∪ Q where Q = {±q1,±q2,±q3}
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where q1 = a2 − a1, q2 = a3 − a2, and q3 = a3 − a1. Further, the support size of each X′i is 3 and
hence it includes at most two of the elements from the set {q1, q2, q3}. The fact that q3 = q1 + q2 is the
additive structure that we shall crucially exploit. Note that in the case k = 3 we have K = 3 as well, and
Pr[X′i = 0] ≥ 1/k = 1/K = 1/3 for each i ∈ [N ].

Recalling the framework from the beginning of Section 8, we reorder q1, q2, q3 so that cq1 ≤ cq2 ≤ cq3 .
We define the “largeness index” `0 ∈ {1, 2, 3, 4} analogously to the definition at the beginning of Section 8,
but with a slight difference in parameter settings: we now define the sequence t1, . . . , tK as t` = (1/ε)C

`

where C is a (large) absolute constant to be fixed later. Define the “largeness index” of the sequence
cq1 ≤ . . . ≤ cqK as the minimum ` ∈ [K] such that cq` > t`, and let `0 denote this value. If there is
no ` ∈ {1, 2, 3} such that cq` > t`, then we set `0 = 4.

Viewing S as S′+V as before, our analysis now involves four distinct cases, one for each possible value
of `0.

9.1 The case that `0 = 4.

This case is identical to Section 8.1 specialized to K = 3, so we can easily learn to accuracy O(ε) in
poly(1/εC

3
) = poly(1/ε) time.

9.2 The case that `0 = 3.

In this case we have cq1 ≤ (1/ε)C and cq2 ≤ (1/ε)C
2

but cq3 ≥ (1/ε)C
3
. By Lemma 45, we have that

dTV(S̃,S′) ≤ O(ε) where S̃ = Sheavy + Slight, Sheavy and Slight are independent of each other, Slight is
supported on a set of O(1/ε2C2+2) integers, and Sheavy is simply q3S3 where S3 =

∑N
i=1 Yi is a signed

PBD with
∑N

i=1 Pr[Yi = ±1] ≥ 1/(2εC
3
). Given this constrained structure, the poly(1/ε)-sample and

running time learnability of S∗ follows as a special case of the algorithm given in the proof of Theorem 48.
In more detail, as described in that proof, two points drawn from S∗ can be used to obtain, with at least
poly(ε) probability, a multiplicative factor-2 estimate of

√
Var[Sheavy]. Given such an estimate no gridding

is required, as it is possible to learn S∗ to accuracy O(ε) simply by using the K = 1 case of the kernel
learning result Lemma 34 (observe that, crucially, having an estimate of Var[Sheavy] provides the algorithm
with the value γ1 in Lemma 34 which is required to construct Z and thereby carry out the kernel learning of
S′ + V using Z).

9.3 The case that `0 = 2.

In this case we have cq1 ≤ (1/ε)C while cq3 , cq2 ≥ (1/ε)C
2
. As earlier we suppose that q1 + q2 = q3.

(This is without loss of generality as the other two cases are entirely similar; for example, if instead we had
q1 +q3 = q2, then we would have q3 = −q1 +q2, and it is easy to check that replacing q1 by−q1 everywhere
does not affect our arguments.)

Lemma 45 now gives us a somewhat different structure, namely that dTV(S̃,S′) ≤ O(ε) where S̃ =
Sheavy + Slight, Sheavy and Slight are independent of each other, Slight = q1S1 where S1 is supported on
[−O(1/εC+1), O(1/εC+1)]∩Z, and Sheavy is a sum of 0-moded integer random variables over {±q2,±q3},
and which satisfies cq2,heavy, cq3,heavy > 1/(2εC

2
). Applying Lemma 39 to Sheavy, we get that dTV(Sheavy,B) =

O(εC
2/20) where either

B = V ′ + q2W2 + q3W3 (32)
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(if the set A from Lemma 39 is empty) or

B = V ′ + q2W2 + q3W3 + (q3 + τ2,3q2)W2,3 (33)

(if A = {(2, 3)}), where all the distributions W2,W3 (and possibly W2,3) are independent signed PBDs
with variance at least Ω(1/εC

2/4) and τ2,3 ∈ {−1, 1}.
Let us first suppose that (32) holds, so S′ + V is O(εC

2/20)-close to

V ′′ + q1S1 + q2W2 + q3W3, (34)

where V ′′ = V + V ′. Since, by Fact 17, q2W2 is O(εC
2/8)-shift-invariant at scale q2, recalling the support

of S1 we get that S′+V is (O(εC
2/20) +O(εC

2/8/εC+1))-close (note that this is O(εC
2/20) for sufficiently

large constant C) to

V ′′ + (q1 + q2)S1 + q2W2 + q3W3 = V ′′ + q2W2 + q3(W3 + S1).

Again using the support bound on S1 and Fact 17 (but now on q3W3), we get that S′+V , and therefore S∗,
is O(εC

2/20)-close to
V ′′ + q2W2 + q3W3. (35)

We can now apply the algorithm in Lemma 49 to semi-agnostically learn the distribution V ′′+q2W2+q3W3

with poly(1/ε) samples and time complexity.
Next, let us consider the remaining possibility in this case which is that (33) holds. If τ2,3 = −1, then

S′ + V is O(εC
2/20)-close to

V ′ + q1S1 + q2W2 + q3W3 + (q3 − q2)W2,3 = V ′ + q1S1 + q2W2 + q3W3 + q1W2,3,

and using Fact 17 as earlier, we get that S′ + V is O(εC
2/20)-close to

V ′′ + q2W2 + q3W3 + q1W2,3. (36)

On the other hand, if τ2,3 = 1 then S′ + V is O(εC
2/20)-close to

V ′′ + q1S1 + q2W2 + q3W3 + (q3 + q2)W2,3,

and by the analysis given between (34) and (35) we get that S′ + V is O(εC
2/20)-close to

V ′′ + q2W2 + q3W3 + (q3 + q2)W2,3, (37)

In either case (37) or (36), we can use Lemma 50 to learn the target distribution with poly(1/ε) samples
and running time.

9.4 The case that `0 = 1.

In this case we have cq1 , cq2 , cq3 ≥ (1/ε)C . Assuming that C ≥ 96, we appeal to Lemma 52 to obtain that
there are independent signed PBDs S1, S2 and S3, each with variance at least 1/ε2, such that

dTV(S′, V + q1S1 + q2S2 + q3S3) ≤ O(ε2).

As before, we can appeal to Lemma 50 to learn the target distribution with poly(1/ε) samples and running
time.
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9.5 Deferred proofs and learning algorithms from the earlier cases

9.5.1 Learning algorithm for weights sums of two PBDs

Lemma 49. There is a universal constant C1 such that the following holds: Let S2,high be a distribution of
the form p ·S(p) + q ·S(q) +V , where both S(p) and S(q) are independent PBDN distributions with variance
at least 1/εC1 and V ∈ Z. Let S be a distribution with dTV(S,S2,high) ≤ ε. There is an algorithm with the
following property: The algorithm is given ε, p, q and access to i.i.d. draws from S. The algorithm makes
poly(1/ε) draws, runs in poly(1/ε) time, and with probability 999/1000 outputs a hypothesis distribution
H satisfying dTV(H,S) ≤ O(ε).

Proof. The high level idea of the algorithm is similar to Theorem 48. First, assume that Var[p · S(p)] ≥
Var[q ·S(q)] (the other case is identical, and the overall algorithm tries both possibilities and does hypothesis
testing). Let σ2

p = Var[S(p)], σ2
q = Var[S(q)] and σ2

2,high = Var[S2,high]. We consider three cases
depending upon the value of σq and show that in each case the kernel based approach (i.e. Lemma 34) can
be used to learn the target distribution S2,high with poly(1/ε) samples (this suffices, again by hypothesis
testing). We now provide details.

Estimating the variance of S2,high: The algorithm first estimates the variance of S2,high. This is done by
sampling two elements s(1), s(2) from S2,high and letting |s(1) − s(2)| = σ̂2,high. Similar to the analysis of
Theorem 48, it is easy to show that with probability Ω(1), we have

1√
2
· σ2,high ≤ σ̂2,high ≤

√
2 · σ2,high. (38)

Guessing the dominant variance term and the relative magnitudes: Observe that

Var[S2,high] = Var[p · S(p)] + Var[q · S(q)].

The algorithm next guesses whether p · σp ≥ q · σq or vice-versa. Let us assume that it is the former
possibility. The algorithm then guesses one of the three possibilities: (i) σq ≤ ε · p, (ii) ε · p ≤ σq ≤ p/ε,
(iii) σq ≥ p/ε. The chief part of the analysis is in showing that in each of these cases, the algorithm
can draw O(1/ε2) samples from S and (with the aid of Lemma 34) can produce a hypothesis H such that
dTV(H,S2,high) = O(ε).

(i) In this case, we assume σq ≤ ε · p. This case is the crucial point of difference where we save the
factor of log log p as opposed to the case k > 3; this is done by working modulo p to estimate σq.
(This is doable in this case because σq is so small relative to p.) The algorithm samples two points
s(3), s(4) ∼ S; note that with probability 1−O(ε) these points are distributed exactly as if they were
drawn from S2,high, so we may analyze the points as if they were drawn from S2,high. Let us assume
that s(3) = p · s(3)

p + q · s(3)
q + V , s(4) = p · s(4)

p + q · s(4)
q + V where s(3)

p , s
(4)
p are i.i.d. draws from

S(p) and similarly for s(3)
q , s

(4)
q . Then, note that with probability at least 1/10, we have

1√
2
· σq ≤ |s(4)

q − s(3)
q | ≤

√
2 · σq.

This immediately implies that if we define σ̂q = q−1 · (s(3) − s(4)) (mod p), then σ̂q = |s(4)
q − s(3)

q |,
and thus

1√
2
· σq ≤ σ̂q ≤

√
2 · σq.
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This gives one of the estimates required by Lemma 34; for the other one, we observe that defining
σ̂p := σ̂2,high/p, having pσp ∈ [Var[S2,high]

2 ,Var[S2,high]] and (38) together give that

1

2
· σp ≤ σ̂p ≤ 2σp.

We can now apply Lemma 34 to get that using poly(1/ε) samples, we can produce a hypothesis
distribution Hlow such that dTV(Hlow,S) = O(ε).

(ii) In this case, we assume ε · p ≤ σq ≤ p · (1/ε). In this case we simply guess one of the O(log(1/ε)/ε)
many values

σ̂q ∈
{

p

(1 + ε/10)i

}
i∈{−O(ln(1/ε)/ε),...,O(ln(1/ε)/ε)}

and one of these guesses σ̂q for σq will be (1 + ε/10)-multiplicatively accurate. For each of these
values of σ̂q, as in case (ii) we can get a multiplicatively accurate estimate σ̂p of σp, so again by
invoking Lemma 34 we can create a hypothesis distribution Hmed,i, and for the right guess we will
have that dTV(Hmed,i,S) = O(ε).

(iii) In this case, we invoke Lemma 40 to get that there is a signed PBD S′ such that dTV(S′, p · S(p) + q ·
S(q)) = O(ε). This also yields that there is a signed PBD S′′ = S′ + V such that dTV(S′′,S2,high) =
O(ε). By a trivial application of Lemma 34, using poly(1/ε) samples, we obtain a hypothesis Hhigh

such that dTV(Hhigh,S) = O(ε).

Finally, invoking the Select procedure from Proposition 25 on the hypothesis distributions

Hlow, {Hmed,i}i∈{−O(ln(1/ε)/ε),...,O(ln(1/ε)/ε)} and Hhigh,

we can use an additional poly(1/ε) samples to output a distribution H such that dTV(H,S) = O(ε).

9.5.2 Learning algorithm for weighted sums of three PBDs

We now give an algorithm for learning a distribution of the form p · S(p) + q · S(q) + r · S(r) + V where
r = p+ q.

Lemma 50. There is a universal constant C1 such that the following holds: Let S3,high be a distribution of
the form p ·S(p) + q ·S(q) + r ·S(r) +V , where S(p),S(q) and S(r) are independent PBDN distributions with
variance at least 1/εC and V ∈ Z and r = q + p. Let S be a distribution with dTV(S,S3,high) ≤ ε. There
is an algorithm with the following property: The algorithm is given ε, p, q, r and access to i.i.d. draws from
S. The algorithm makes poly(1/ε) draws, runs in poly(1/ε) time, and with probability 999/1000 outputs a
hypothesis distribution H satisfying dTV(H,S) ≤ O(ε).

Proof. The algorithm begins by sampling two points s(1), s(2) from S. Similar to the preceding proof, with
probability Ω(1) we have

1√
2
· σ3,high ≤ σ̂3,high ≤

√
2 · σ3,high,

where σ2
3,high = Var[S3,high]. Having obtained an estimate of σ3,high, let us now assume (without loss of

generality, via hypothesis testing) that σp ≥ σq ≥ σr. Similar to Lemma 49, we consider various cases, and
for each case (and relevant guesses) we run Lemma 34 and obtain a hypothesis distribution for each of these
guesses. Finally, we will use procedure Select (Proposition 25) on the space of these hypotheses to select
one. Let us now consider the cases:
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1. σr ≥ ε5 ·σp: In this case, note that given σ̂3,high, we can construct a grid J of poly(1/ε) many triples
such that there exists γ = (γp, γq, γr) ∈ J such that for α ∈ {p, q, r},

1√
2
· σα ≤ γα ≤

√
2 · σα.

For each such possibility γ, we can apply Lemma 34 which uses poly(1/ε) samples; as before, for
the right guess, we will obtain a hypothesis Hγ such that dTV(Hγ ,S) = O(ε).

2. σr ≤ ε5 · σp: In this case, since r = p+ q,

p · S(p) + q · S(q) + r · S(r) = p · S(p) + q · S(q) + (p+ q) · S(r).

As σr ≤ ε5 · σp, using the O(1/σp)-shift-invariance of p · S(p) at scale p that follows from Fact 17
and a Chernoff bound on S(r), we get that for some integer V ′,

dTV(p · S(p) + q · S(q) + r · S(r), p · (S(p) + V ′) + q · (S(q) + S(r))) = O(ε4).

Thus we have
dTV(S3,high, V ′′ + p · S(p) + q · (S(q) + S(r))) = O(ε4)

for some integer V ′′. However, now we are precisely in the same case as Lemma 49. Thus, using
poly(1/ε) samples, we can now obtain H(2) such that dTV(H(2),S) = O(ε).

Finally, we apply Select (Proposition 25) on H(2) and {Hγ}γ∈J . This finishes the proof.

9.5.3 Structural lemma for decomposing a heavy distribution into a sum of weighted sums of PBDs

Our goal in this subsection is to prove Lemma 52. To do this, we will need a slightly more detailed version
of Lemma 39 in the case that K = 2, which is implicit in the proof of that lemma (using the case that A = ∅
for (39) and the case that A = {(1, 2)} for (40)).

Lemma 51. Under the assumptions of Lemma 39 in the case that K = 2, there is an integer V ′, and
independent signed PBDs W1,1, W2,2 and W1,2, all with variance at least Ω(R1/4), such that either

dTV (S′, V ′ + q1W1,1 + q2W2,2) = O(R−1/20), (39)

or
dTV (S′, V ′ + q1W1,1 + q2W2,2 + (q2 + sign(Cov(M1,M2))q1)W1,2) = O(R−1/20), (40)

where M = (M1,M2) is as defined in (11).

Let S′ =
∑N

i=1 X
′
i where each X′i is 0-moded and supported on {0,±p,±q,±r} where r = q+p. Each

random variable X′i has a support of size 3, and by inspection of how X′i is obtained from Xi, we see that
each X′i is supported either on {0, p, r}, or on {−p, 0, q}, or on {−r,−q, 0}. If for α ∈ {p, q, r}, we define
cα =

∑N
i=1 Pr[X ′i = ±α], then we have the following lemma.

Lemma 52. Let S′ =
∑N

i=1 X
′
i as described above where cp, cq, cr > 1/εC . Then we have

dTV(S′, V + p · S(p) + q · S(q) + r · S(r)) ≤ O(εC1), (41)

where V is a constant, C1 = C/48 and S(p),S(q) and S(r) are mutually independent PBDN distributions
each of which has variance at least 1/(εC1).
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Proof. We first prove that

dshift,p(S
′) ≤ εC/2; dshift,q(S

′) ≤ εC/2; dshift,r(S
′) ≤ εC/2. (42)

To see this, note that, as we showed in the proof of Lemma 45, dshift,p(X′i) ≤ 1 − Pr[X′i = ±p]. By
applying Corollary 23, we get that

dshift,p(S
′) = O

(
1√∑

iPr[X′i = ±p]

)
= O(εC/2).

Likewise, we also get the other components of (42).
Let us next consider three families of i.i.d. random variables {Y′i}mi=1, {Z′i}mi=1 and {W′

i}mi=1 defined
as follows: for 1 ≤ i ≤ m,

Pr[Y′i = 0] = Pr[Y′i = p] = 1/2; Pr[Z′i = 0] = Pr[Z′i = q] = 1/2;Pr[W′
i = 0] = Pr[W′

i = r] = 1/2;

Letm = ε−C/4. Let
∑m

i=1 Y
′
i = S(y),

∑m
i=1 Z

′
i = S(z) and

∑m
i=1 W

′
i = S(w). Let Se = S(y)+S(z)+S(w),

and note that Se is supported on {i · p+ j · q + k · r} where 0 ≤ i, j, k ≤ m. Using (42), we have

dTV(S′,S′ + Se) ≤ m · εC/2 = O(εC/4).

Thus, it suffices to prove

dTV(S′ + Se, V + p · S(p) + q · S(q) + r · S(r)) ≤ O(εC1). (43)

We assign each random variable X′i to one of three different types:

• Type 1: The support of X′i is {0, p, r}.

• Type 2: The support of X′i is {−p, 0, q}.

• Type 3: The support of X′i is {−r,−q, 0}.

Let the set of Type 1 variables be given by S1. We will show that there exists independent signed PBDs
S(p,1), S(q,1) and S(r,1) and a constant V1 such that the variances of S(p,1) and S(r,1) are each at least ε−C1 ,
and S(q,1) is either constant (when (39) holds) or has variance at least ε−C1 (when (40) holds), and that
satisfy

dTV

(∑
i∈S1

X′i +

m/2∑
i=1

Y′i +

m/2∑
i=1

W′
i, V1 + p · S(p,1) + q · S(q,1) + r · S(r,1)

)
= O(εC/48). (44)

If we can prove (44), then we can analogously prove the symmetric statements that

dTV

(∑
i∈S2

X′i +

m∑
i=m/2+1

Y′i +

m/2∑
i=1

Z′i, V2 + p · S(p,2) + q · S(q,2) + r · S(r,2)

)
= O(εC/48)

and

dTV

(∑
i∈S3

X′i +
m∑

i=m/2+1

W′
i +

m∑
i=m/2+1

Z′i, V3 + p · S(p,3) + q · S(q,3) + r · S(r,3)

)
= O(εC/48),
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with analogous conditions on the variances of S(p,2),S(q,2),S(r,2),S(p,3),S(q,3),S(r,3), and combining these
bounds with (44) will imply the desired inequality (43).

Thus it remains to prove (44). Let γ1 =
∑

i∈S1 Pr[X′i = p] and δ1 =
∑

i∈S1 Pr[X′i = r]. We consider
the following cases:

Case (I): Assume γ1 and δ1 ≥ ε−C/8. Since the possibilities X′i = p and X′i = r are mutually exclusive,
for each i we have that Cov(1X′i=p,1X′i=r) ≤ 0, which implies that Cov(

∑
i 1X′i=p,

∑
i 1X′i=r) ≤ 0.

Applying Lemma 51 to the distribution
∑

i∈S1 X
′
i, we obtain (44) in this case.

Case (II): Now let us assume that at least one of γ1 or δ1 is less than ε−C/8, without loss of generality, that
γ1 < ε−C/8. For each variable X′i, let us consider a corresponding random variable X̃′i defined by replacing
the p-outcomes of X′i with 0’s. If Z is any distribution such that dshift,p(Z) ≤ κ, then

dTV(Z + X′i,Z + X̃′i) ≤ κ ·Pr[X̃′i = p].

Applying this observation iteratively, we have

dTV

(∑
i∈S1

X′i +

m/2∑
i=1

Y′i +

m/2∑
i=1

W′
i,
∑
i∈S1

X̃′i +

m/2∑
i=1

Y′i +

m/2∑
i=1

W′
i

)
= O(γ1 · εC/4) = O(εC/8).

However, now note that
∑

i∈S1 X̃
′
i +
∑m/2

i=1 Y′i +
∑m/2

i=1 W′
i can be expressed as p · S(p,1) + r · S(r,1) for

independent signed PBDs S(p,1), and S(r,1), and that the variances of
∑m/2

i=1 Y′i and
∑m/2

i=1 W′
i ensure that

Var[S(p,1)],Var[S(r,1)] ≥ ε−C/2. This establishes (44) in this case, completing the proof of the lemma.

10 Unknown-support algorithms: Proof of Theorems 3 and 4

We begin by observing that the hypothesis selection procedure described in Section 4.4.1 provides a straight-
forward reduction from the case of unknown-support to the case of known-support. More precisely, it im-
plies the following:

Observation 53. For any k, let A be an algorithm that semi-agnostically learns {a1, ..., ak}-sums, with
0 ≤ a1 < · · · < ak, using m(a1, . . . , ak, ε, δ) samples and running in time T (a1, . . . , ak, ε, δ) to learn to
accuracy ε with probability at least 1 − δ, outputting a hypothesis distribution from which it is possible to
generate a draw or evaluate the hypothesis’s p.m.f. on a given point in time T ′(a1, . . . , ak). Then there is
an algorithm A′ which semi-agnostically learns (amax, k)-sums using(

max
0≤a1<···<ak≤amax

m(a1, . . . , ak, ε/6, δ/2)

)
+O(k log(amax)/ε2 + log(1/δ)/ε2)

samples, and running in time

poly((amax)k, 1/ε) ·
(

max
0≤a1<···<ak≤amax

(T (a1, . . . , ak, ε)) + T ′(a1, . . . , ak)

)
,

and, with probability at least 1− δ, outputting a hypothesis with error at most 6ε.
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The algorithm A′ works as follows: first, it tries all (at most (amax)k) possible vectors of values
for (a1, . . . , ak) as the parameters for algorithm A, using the same set of max0≤a1<···<ak≤amax m(a1,
. . . , ak, ε, δ/2) samples as the input for each of these runs of A. Having done this, A′ has a list of can-
didate hypotheses such that with probability at least 1 − δ/2, at least one of the candidates is ε-accurate.
Then A′ runs the Select procedure from Proposition 25 on the resulting hypothesis distributions.

Together with Theorems 1 and 2, Observation 53 immediately yields Theorem 3 (learning (amax, 3)-
sums). It also yields a result for the unknown-support k = 2 case, but a sub-optimal one because of the
log(amax) dependence. In the rest of this section we show how the sharper bound of Theorem 4, with no
dependence on amax, can be obtained by a different (but still simple) approach.

Recall Theorem 4:

Theorem 4. Learning (amax, 2)-sums There is an algorithm and a positive constant c with the following
properties: The algorithm is givenN , accuracy and confidence parameters ε, δ > 0, an upper bound amax ∈
Z+, and access to i.i.d. draws from an unknown random variable S∗ that is cε-close to a {a1, a2}-sum S,
where 0 ≤ a1 ≤ a2 ≤ amax. The algorithm uses poly(1/ε) draws from S∗, runs in poly(1/ε, log(1/δ))
time, and with probability 1− δ outputs a (concise representation of a) hypothesis distribution H such that
dTV(H,S∗) ≤ ε.

Proof. Let the S over (unknown values) {a1, a2} be S =
∑N

i=1 Xi where Xi(a1) = 1 − pi, Xi(a2) = pi.
Let X′i, i ∈ [N ] be independent Bernoulli random variables with X′i(1) = pi. The distribution S is identical
to a1N + (a2 − a1)S′ where S′ is the PBD S′ =

∑N
i=1 X

′
i.

Intuitively, if the values a1 and a2 (hence a1 and a2 − a1) were known then it would be simple to learn
using the algorithm for learning a PBDN . The idea of what follows is that either (i) learning is easy because
the essential support is small, or (ii) it is possible to infer the value of a2 − a1 (basically by taking the gcd
of a few sample points) and, given this value, to reduce to the problem of learning a PBDN . Details follow.

If the PBD S′ is in sparse form (see Theorem 19), then it (and hence S) is ε-essentially-supported on a
set of size O(1/ε3). In this case the algorithm A′ of Fact 24 can learn S∗ to accuracy O(ε) in poly(1/ε)
time using poly(1/ε) samples. Thus we may subsequently assume that S′ is not in sparse form. (The
final overall algorithm will run both A′ and the learning algorithm described below, and use the hypothesis
selection procedure from Section 4.4.1 to choose the overall final hypothesis from these two.)

Since S′ is not in sparse form, by the last part of Theorem 19 it is in 1/ε-heavy binomial form. We will
require the following proposition:

Proposition 54. Let S′ =
∑N

i=1 S
′
i be a PBD that is in 1/ε-heavy binomial form, and let a ∈ Z+, b ∈ Z.

With probability at least 1 − O(
√
ε), the gcd of m = Ω(1/

√
ε) i.i.d. draws v1, . . . , vm from a(S′ − b) is

equal to a.

Proof. S′ is ε-close to a translated Binomial distribution Y as described in the second bullet of Theorem 19,
and (by Fact 20) Y is O(ε)-close to Z, a discretized N(µY, σ

2
Y) Gaussian where σ2

Y = Ω(1/ε2). It follows
that a collection of m i.i.d. draws from S∗ is distributed exactly as a collection of m i.i.d. draws from Z
except with failure probability O(mε). Incurring this failure probability, we may suppose that v1, . . . , vm
are i.i.d. draws from Z. Except with an additional failure probability 2−Ω(m), at least Ω(m) of these draws
lie within ±σY of µY, so we additionally suppose that this is the case. Next, since any two points within
one standard deviation of the mean of a discretized Gaussian have probability mass within a constant factor
of each other, with an additional failure probability of at most 2−Ω(m) we may suppose that the multiset
{v1, . . . , vm} contains at least ` = Ω(m) points that are distributed uniformly and independently over the
integer interval I := [µY − σY, µY + σY] ∩ Z. Thus, to establish the proposition, it suffices to prove that
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for any b ∈ Z, with high probability the gcd of ` points drawn uniformly and independently from the shifted
interval I − b is 1.

The gcd is 1 unless there is some prime p such that all ` draws from I − b are divisible by p. Since ε
is at most some sufficiently small constant, we have that |I| is at least (say) 100; since |I| ≥ 100, for any
prime p at most a 1.02/p fraction of the points in I are divisible by p, so Pr[all ` draws are divisible by p] ≤
(1.02/p)`. Thus a union bound gives

Pr[gcd > 1] ≤
∑

prime p

Pr[ all ` draws are divisible by p] ≤
∑

prime p

(1.02/p)` <
∑
n≥2

(1.02/n)` < (2/3)`,

and the proposition is proved.

We now describe an algorithm to learn S∗ when S′ is in 1/ε-heavy binomial form. The algorithm first
makes a single draw from S∗ call this the “reference draw”. With probability at least 9/10, it is from S;
let us assume from for the rest of the proof that this is the case, and let its value be v = a1(N − r) + a2r.
Next, the algorithm makes m = Ω(1/

√
ε) i.i.d. draws u1, . . . , um from S∗. Since dTV (S,S∗) < cε for a

small positive constant c, and ε is at most a small constant, a union bound implies that, except for a failure
probability O((1/

√
ε)ε) < 1/10, all of these draws come from S. Let us assume from here on that this is

the case. For each i, the algorithm sets vi = ui − v, and computes the gcd of v1, . . . , vm. Each ui equals
a1(N − ni) + a2ni where ni is drawn from the PBD S′, so we have that

vi = a1(N − ni) + a2ni − a1(N − r)− a2r = (a2 − a1)(ni − r),

and Proposition 54 gives that with failure probability at most O(
√
ε), the gcd of n1 − r, ..., nm − r is 1, so

that the gcd of v1, ..., vm is equal to a2 − a1.
With the value of a2−a1 in hand, it is straightforward to learn S. Dividing each draw from S by a2−a1,

we get draws from a1N
a2−a1 +S′ where S′ is the PBDN described above. Such a “shifted PBD” can be learned

easily as follows: if a1N
a2−a1 is an integer then this is a PBD(a1+1)N , hence is a PBD(amax+1)N , and can be

learned using the algorithm for learning a PBDN ′ given the value of N ′. If a1N
a2−a1 is not an integer, then its

non-integer part can be obtained from a single draw, and subtracting the non-integer part we arrive at the
case handled by the previous sentence.

The algorithm described above has failure probability O(
√
ε), but by standard techniques (using hy-

pothesis selection) this failure probability can be reduced to an arbitrary δ at the cost of a log(1/δ) factor
increase in sample complexity. This concludes the proof of Theorem 4.

11 A reduction for weighted sums of PBDs

Below we establish a reduction showing that an efficient algorithm for learning sums of weighted PBDs
with weights {0 = a1, . . . , ak} implies the existence of an efficient algorithm for learning sums of weighted
PBDs with weights {0 = a1, . . . , ak−1} mod ak. Here by “learning sums of weighted PBDs with weights
{0 = a1, . . . , ak−1} mod ak” we mean an algorithm which is given access to i.i.d. draws from the distribu-
tion S′ := (S mod ak) where S is a weighted sum of PBDs with weights {0 = a1, . . . , ak−1}, and should
produce a high-accuracy hypothesis distribution for S′ (which is is supported over {0, 1, . . . , ak − 1}); so
both the hypothesis distribution and the samples provided to the learning algorithm are reduced mod ak.
Such a reduction will be useful for our lower bounds because it enables us to prove a lower bound for learn-
ing a weighted sum of PBDs with k unknown weights by proving a lower bound for learning mod ak with
k − 1 weights.
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The formal statement of the reduction is as follows:

Theorem 55. Suppose that A is an algorithm with the following properties: A is given N , an accuracy
parameter ε > 0, a confidence parameter δ > 0, and distinct non-negative integers 0 = a1, . . . , ak. A is
provided with access to i.i.d. draws from a distribution S where S = a2S2 + · · ·+ akSk and each Si is an
unknown PBDN . For all N , A makes m(a1, . . . , ak, ε, δ) draws from S and with probability at least 1 − δ
outputs a hypothesis S̃ such that dTV(S′, S̃) ≤ ε.

Then there is an algorithm A′ with the following properties: A′ is given N, 0 = a1, . . . , ak, ε, δ and is
provided with access to i.i.d. draws from T′ := (T mod ak) where T = a2T2 + · · · + ak−1Tk−1 where
in turn each Ti is a PBDN . A makes m′ = m(a1, . . . , ak, ε, δ/2) draws from T′ and with probability 1− δ
outputs a hypothesis T̃′ such that dTV(T′, T̃′) ≤ ε.
Proof. The high-level idea is simple; in a nutshell, we leverage the fact that the algorithmAworks with sam-
ple complexity m(a1, . . . , ak, ε, δ) independent of N for all N to construct a data set suitable for algorithm
A from a “mod ak” data set that is the input to algorithm A′.

In more detail, as above suppose the target distribution T′ is (T mod ak) where T = a2T2 + · · · +
ak−1Tk−1 and each Ti is an independent PBDN . Algorithm A′ works as follows: First, it makes m′ draws
v′1, . . . , v

′
m′ from T′, the j-th of which is equal to some value (a2N2,j + · · · + ak−1Nk−1,j) mod ak.

Next, using its own internal randomness it makes m′ draws Nk,1, . . . , Nk,m′ from the PBDN? distribution
Tk := Bin(N?, 1/2) (we specify N? below, noting here only that N? � N ) and constructs the “synthetic”
data set of m′ values whose j-th element is

uj := v′j + akNk,j .

Algorithm A′ feeds this data set of values to the algorithm A, obtains a hypothesis H, and outputs (H
mod ak) as its final hypothesis.

To understand the rationale behind this algorithm, observe that if each value v′j were an independent
draw from T rather than T′ (i.e., if it were not reduced mod ak), then each uj would be distributed precisely
as a draw from T? := a2T2 + · · ·+ ak−1Tk−1 + akTk (observe that each PBDNi is also a PBDN? , simply
by having the “missing”N?−Ni Bernoulli random variables all trivially output zero). In this case we could
invoke the performance guarantee of algorithm A when it is run on such a target distribution. The issue, of
course, is that v′j is a draw from T′ rather than T, i.e. v′j equals (vj mod ak) where vj is some draw from
T. We surmount this issue by observing that since akTk is shift-invariant at scale ak, by taking Tk to have
sufficiently large variance, we can make the variation distance between the distribution of each v′j and the
original vj sufficiently small that so it is as if the values v′j actually were drawn from T rather than T′.

In more detail, let us view v′j as the reduction mod ak of a draw vj from T as just discussed; i.e., let
v′j ∈ {0, ..., ak − 1} satisfy v′j = vj + akcj for cj ∈ Z. We observe that each cj satisfies |cj | < amax ·N.
Recalling that Tk = Bin(N?, 1/2) has Var[Tk] = N?/4, by Fact 17 we have that dTV(akTk+T, akTk+
T′) ≤ O(1/

√
N?) ·amax ·N . Hence the variation distance between (akTk+T′)m

′
(from which the sample

u1, . . . , um′ is drawn) and (akTk + T)m
′

= (T?)m
′

(what we would have gotten if each v′j were replaced
by vj) is at most O(1/

√
N?) · amax ·N ·m′. By taking N? = Θ((amax ·N ·m′/δ)2), this is at most δ/2,

so at the cost of a δ/2 failure probability we may assume that the m′ = m(a1, . . . , ak, ε, δ/2)-point sample
u1, . . . , um′ is drawn from T?. Then with probability 1−δ/2 algorithmA outputs an ε-accurate hypothesis,
call it T̃? (this is the H mentioned earlier), for the target distribution T? from which its input sample was
drawn, so dTV(T̃?,T?) ≤ ε. Taking T̃′ to be (T̃? mod ak) and observing that (T? mod ak) ≡ T′, we
have that

dTV(T̃′,T′) = dTV((T̃? mod ak), (T
? mod ak)) ≤ dTV(T̃?,T?) ≤ ε,

and the proof is complete.
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12 Known-support lower bound for |A| = 4: Proof of Theorem 5

Recall Theorem 5:

Theorem 5. (k = 4, known-support lower bound) Let A be any algorithm with the following properties:
algorithm A is given N , an accuracy parameter ε > 0, distinct values 0 ≤ a1 < a2 < a3 < a4 ∈ Z,
and access to i.i.d. draws from a unknown {a1, a2, a3, a4}-sum and with probability at least 9/10 algorithm
A outputs a hypothesis distribution S̃ such that dTV(S̃,S) ≤ ε. Then there are infinitely many quadruples
(a1, a2, a3, a4) such that for sufficiently large N , A must use Ω(log log a4) samples even when run with ε
set to a (suitably small) positive absolute constant.

12.1 Proof of Theorem 5

Fix a1 = 0 and a2 = 1. (It suffices to prove a lower bound for this case.) To reduce clutter in the notation,
let p = a3 and q = a4. Applying Theorem 55, it suffices to prove that Ω(log log q) examples are needed
to learn distributions of random variables of the form S = U + pV mod q, where U and V are unknown
PBDs over Θ(N) variables. We do this in the rest of this section.

Since an algorithm that achieves a small error with high probability can be used to achieve small error
in expectation, we may use Lemma 27, which provides lower bounds on the number of examples needed
for small expected error, to prove Theorem 5. To apply Lemma 27, we must find a set of distributions
S1, . . . ,Si, . . . , where Si = Ui + pVi mod q, that are separated enough that they must be distinguished
by a successful learning algorithm (this is captured by the variation distance lower bound of Lemma 27),
but close enough (as captured by the Kullback-Liebler divergence upper bound) that this is difficult. We
sketched the ideas behind our construction of these distributions S1, . . . ,ST , T = logΘ(1) q, earlier in
Section 3, so we now proceed to the actual construction and proof.

The first step is to choose p and q. The choice is inspired by the theory of rational approximation of
irrational numbers. The core of the construction requires us to use an irrational number which is hard to
approximate as a ratio of small integers but such that, expressed as a continued fraction, the convergents do
not grow very rapidly. For concreteness, we will consider the inverse of the golden ratio φ:

1

φ
=

1

1 +
1

1 +
1

1 + · · ·

Let f0 = 1, f1 = 1, f2 = 2, . . . denote the Fibonacci numbers; It is easy to see that the tth convergent
of 1/φ is given by ft−1/ft. We take p = fL, q = fL+1 where we think of L as an asymptotically large
parameter (and of course q = fL+1 implies L = Θ(log q)). Looking ahead, the two properties of 1/φ which
will be useful will be: (a) For any t, ft/ft+1 is a very good approximation of 1/φ, and moreover, (b) the
approximations obtained by these convergents are essentially the best possible.

Definition 56. Let ρq(a, b) be the Lee metric on Zq, i.e., the minimum of |j| over all j such that a = b+ j
mod q.

The following lemma records the properties of p and q that we will use. To interpret this lemma, it
may be helpful to imagine starting at 0, taking steps of size p through [q], wrapping around when you get
to the end, and dropping a breadcrumb after each step. Because p and q are relatively prime, after q steps,
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each member of [q] has a breadcrumb. Before this, however, the lemma captures two ways in which the
breadcrumbs are “distributed evenly” (in fact, within constant factors of optimal) throughout the walk: (a)
they are pairwise well-separated, and (b) all positions have a breadcrumb nearby.

Lemma 57. There are absolute constants c1, c2 > 0 such that, for all integers v 6= v′, v, v′ ∈ (−c2q, c2q),
we have

ρq(pv, pv
′) >

c1q

max{|v|, |v′|}
. (45)

Furthermore, for any i ∈ [q], for any t ≤ L, there is a v ∈ {−ft, ..., ft} such that

ρq(i, pv) ≤ 3q

ft
. (46)

To prove the first part of Lemma 57, we need the following lemma on the difficulty of approximating
1/φ by rationals.

Lemma 58 ([HWHB+08]). There is a constant c3 > 0 such that for all positive integers m and n,∣∣∣∣mn − 1

φ

∣∣∣∣ ≥ c3

n2
.

We will also use the fact that ft−1

ft
is a good approximation.

Lemma 59 ([HWHB+08]). For all t, ∣∣∣∣ft−1

ft
− 1

φ

∣∣∣∣ < 1

f2
t

.

Proof of Lemma 57. Assume without loss of generality that v′ < v. By the definition of ρq, there is an
integer u such that

|pv − pv′ − uq| = ρq(pv, pv
′).

Dividing both sides by q(v − v′), we get∣∣∣∣pq − u

v − v′

∣∣∣∣ =
ρq(pv, pv

′)

q(v − v′)
.

Hence we have
c3

(v − v′)2
≤
∣∣∣∣ 1φ − u

v − v′

∣∣∣∣ < ρq(pv, pv
′)

q(v − v′)
+

1

q2
,

where we have used Lemma 58 for the first inequality and Lemma 59 for the second.
If |v| ≤

√
c3/4 · q and |v′| ≤

√
c3/4 · q, then we get

ρq(pv, pv
′)

q(v − v′)
>

c3

2(v − v′)2
,

so that
ρq(pv, pv

′) >
c3q

2(v − v′)
≥ c3q

4 max{|v|, |v′|}
,

completing the proof of (45).
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Now we turn to (46). Two applications of Lemma 59 and the triangle inequality together imply∣∣∣∣ft−1

ft
− p

q

∣∣∣∣ =

∣∣∣∣ft−1

ft
− fL
fL+1

∣∣∣∣ ≤ ∣∣∣∣ft−1

ft
− 1

φ

∣∣∣∣+

∣∣∣∣ fLfL+1
− 1

φ

∣∣∣∣ ≤ 1

f2
t

+
1

f2
L+1

≤ 2

f2
t

.

Thus, for all integers j with |j| ≤ ft, we have∣∣∣∣jft−1

ft
− jp

q

∣∣∣∣ ≤ 2

ft
. (47)

Since ft−1 and ft are relatively prime, the elements
{
jft−1

ft
mod 1 : j ∈ [ft]

}
are exactly equally spaced

over [0, 1], so there is some j̃ ∈ [q] such that the fractional part of jft−1

ft
is within ± 1

ft
of i/q. Applying

(47), the fractional part of j̃p
q is within ± 3

ft
of i/q, and scaling up by q yields (46), completing the proof of

Lemma 57.

Let ` = b
√
Lc. Now that we have p and q, we turn to defining (U1,V1), ..., (U`,V`). The distributions

that are hard to distinguish will be chosen from among

S1 = U1 + pV1 mod q, . . . ,S` = U` + pV` mod q.

For a positive integer a let Bin(a2, 1/2) be the Binomial distribution which is a sum of a2 independent
Bernoulli random variables with expectation 1/2, and let W(a) = Bin(2a2, 1/2)− a2. Let C = da2/qe so
that Cq − a2 ≥ 0, and observe that

W(a) + Cq mod q is identical to W(a) mod q,

and that W(a) + Cq is a PBDΘ(q+a2) distribution.
We will need a lemma about how the W random variables “behave like discretized Gaussians” that is a

bit stronger in some cases than the usual Chernoff-Hoeffding bounds. We will use the following bound on
binomial coefficients:

Lemma 60 ([Ros99]). If k = o(n3/4), then

1

2n
·
(

n

bn/2c+ k

)
= O

(
1√
n

exp

(
−2k2

n

))
.

Now for our bound regarding W.

Lemma 61. There is a constant c4 > 0 such that for all k,

Pr[W(a) = k] ≤
c4 exp

(
− k2

2a2

)
a

.

Proof. If |k| ≤ a4/3, the lemma follows directly from Lemma 60. If |k| > a4/3, we may suppose w.l.o.g.
that k is positive. Then Hoeffing’s inequality implies that

Pr[W(a) = k] ≤ Pr[W(a) ≥ k] ≤ exp

(
−k

2

a2

)
≤ exp

(
− k2

2a2

)
exp

(
− k2

2a2

)
≤ exp

(
− k2

2a2

)
exp

(
−a

2/3

2

)
= O

(
exp

(
− k2

2a2

)
/a

)
,

completing the proof.
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The following lemma may be considered a standard fact about binomial coefficients, but for complete-
ness we give a proof below.

Lemma 62. For every c > 0, there exists c′ > 0 such that for all integers x, a with |x| < c · a,

Pr[W(a) = x] ≥ c′

a
.

Proof. Note that

Pr[W(a) = x] =
1

22a2
·
(

2a2

a2 + x

)
Thus,

Pr[W(a) = x] ≥ 1

22a2
·
(

2a2

a2

)
· (a2)!(a2)!

(a2 + x)!(a2 − x)!

≥ 1

10 · a
·
x∏
j=1

a2 − j + 1

a2 + j
=

1

10 · a
·
x∏
j=1

1− j−1
a2

1 + j
a2

≥ 1

10 · a
·
x∏
j=1

e
−10·j
a2 ≥ 1

10 · a
· e−

10·x2
a2 .

Here the second inequality uses that 2−2n ·
(

2n
n

)
≥ 1

10·
√
n

and the third inequality uses that for j ≤ a2/2,

e
−10·j
a2 ≤ (1− j−1

a2
)/(1 + j

a2
). The bound on Pr[W(a) = x] follows immediately.

Now, let Ut = W(b p
c5ft
c), where c5 is a constant that we will set in the analysis, and let Vt = W(ft).

Recall that St = Ut + pVt mod q. Let `′ = bL1/4c and recall that ` = bL1/2c. Let S = {S`′ , ...,S`} This
is the set of Ω(log1/2 q) distributions to which we will apply Lemma 27.

Now, to apply Lemma 27 we need upper bounds on the KL-divergence between pairs of elements of S,
and lower bounds on their total variation distance. Intuitively, the upper bound on the KL-divergence will
follow from the fact that each St “spaces apart by Θ(p/ft) PBDs with a lot of measure in a region of size
p/ft” (i.e. the translated Ut distributions), so the probability never gets very small between consecutive
“peaks” in the distribution; consequently, all of the probabilities in all of the distributions are within a
constant factor of one another. The following lemma makes this precise:

Lemma 63. There is a constant c6 > 0 such that, for large enough q, if bL1/4c < t < L1/2, for all i ∈ [q],

1

c6q
≤ Pr[St = i] ≤ c6

q
.

Proof. Fix an arbitrary t for which bL1/4c < t < L1/2. Since t is fixed, we drop it from all subscripts.
First, let us work on the lower bound. Roughly, we will show that a random v ∼ V has a good chance

of translating U within Θ(σ(U)) of i. Specifically, (46) implies that there is a u ∈ [−3bq/ftc, 3bq/ftc] and
a v ∈ [−ft, ft] such that i = u+ pv mod q. Thus

Pr[S = i] ≥ Pr[U = u] ·Pr[V = v] ≥ Ω

(
ft
p
· 1

ft

)
≥ Ω

(
1

p

)
= Ω

(
1

q

)
,

where the second inequality follows from an application of Lemma 62 (recalling that q = Θ(p)).
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Now for the upper bound. We have

Pr[S = i] =
∑
v

Pr[S = i|V = v]Pr[V = v]

=
∑
v

Pr[U = i− pv mod q]Pr[V = v]

< o(1/q) +
∑

v:|v|≤σ(V ) ln q

Pr[U = i− pv mod q]Pr[V = v],

since Pr[|v| > σ(V ) ln q] = o(1/q). Let V1 = [−σ(V), σ(V)], and, for each j > 1, let Vj = [−jσ(V), jσ(V)]−
Vj−1. Then

Pr[S = i] ≤ o(1/q) +

bln qc∑
j=1

∑
v∈Vj

Pr[U = i− pv mod q]Pr[V = v]

≤ o(1/q) +O(1) ·
bln qc∑
j=1

e−j
2/2

σ(V)

∑
v∈Vj

Pr[U = i− pv mod q], (48)

by Lemma 61.
Now fix a j ≤ ln q. Let (v′k)k=1,2,... be the ordering of the elements of Vj by order of increasing ρq-

distance from pv′k to i. Since each |v′k| ≤ j · σ(V) � c2q, Lemma 57 implies that ρq-balls of radius

Ω
(

q
jσ(V)

)
centered at members of pv′1, ..., pv

′
k are disjoint, so

k · Ω
(

q

jσ(V)

)
< 2ρq(pv

′
k, i) + 1.

Since σ(U)σ(V) = Θ(q), we get

ρq(pv
′
k, i) = Ω

(
kσ(U)

j

)
. (49)

Applying Lemma 61, we get

∑
v∈Vj

Pr[U = i− pv mod q] ≤ 1

σ(U)

∑
k>0

exp

(
− Ω

(
k2 · σ2(U)

j2σ2(U)

))
= O

(
j

σ(U)

)
.

Combining with (48), we get

Pr[S = i] =
∞∑
j=1

O

(
j

σ(U)

)
·O
(

1

σ(V)

)
· e−j2/2 = O

(
1

σ(U) · σ(V)

)
= O

(
1

q

)
.

This finishes the upper bound on Pr[S = i], concluding our proof.

We have the following immediate corollary.

Lemma 64. There is a constant c7 such that, for all i, j ∈ {`′, ..., `}, we have DKL(Si||Sj) ≤ c7.

It remains only to give a lower bound on the total variation distance.
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Lemma 65. There is a positive constant c8 such that, for large enough q, for ` ≥ i > j, we have
dTV (Si,Sj) > c8.

Proof. LetW be the union of two integer intervals

W = [−fi, ...,−fj+1] ∪ [fj+1, ..., fi].

It may be helpful to think ofW as being comprised of v such that pv is the location of a “peak” in Si, but
not in Sj . We will show that Si assigns significantly more probability to points close to pv than Sj does.

Choose v ∈ W , and u with |u| ≤ p
c5fi

. (We will later set c5 > 0 to be a sufficiently large absolute
constant.) For large enough q, standard facts about binomial coefficients give that

Pr[Si = pv + u mod q] ≥ Pr[Vi = v] ·Pr[Ui = u] ≥ 1

5fi
· c5fi

5p
=

c5

25p
. (50)

Now, let us upper bound Pr[Sj = pv + u mod q]. Let a ∈ [q] be such that pv + u = a mod q. We have

Pr[Sj = a] =
∑
v

Pr[Sj = a |Vj = v]Pr[Vj = v]

< o(1/q2) +
∑

v:|v|≤σ(Vj) ln q

Pr[Sj = a |Vj = v]Pr[Vj = v].

As before, let V1 = [−σ(Vj), σ(Vj)], and, for each h > 1, let Vh = [−hσ(Vj), hσ(Vj)] − Vh−1, so that
Lemma 61 implies

Pr[Sj = a] ≤ o(1/q2) +

bln qc∑
h=1

∑
v∈Vh

Pr[Uj = a− pv mod q]Pr[Vj = v] (51)

≤ o(1/q2) +

bln qc∑
h=1

c4e
−(h−1)2/2

σ(Vj)

∑
v∈Vh

Pr[Uj = a− pv mod q]. (52)

Let (v′k)k=1,2,... be the ordering of the elements of Vh by order of increasing ρq distance from a to pv′k.
Since each |v′k| ≤ h · σ(V) � c2q, Lemma 57 implies that ρq-balls of radius c1q

2hfj
centered at members of

pv′1, ..., pv
′
k are disjoint, so

k · c1q

hfj
< 2ρq(a, pv

′
k) +

c1q

hfj
.

so, for large enough q, we have

ρq(a, pv
′
k) >

c1(k − 1)q

5hfj
.

Using this with Lemma 61, we get that, for large enough q,∑
v∈Vh

Pr[Uj = a− pv mod q] ≤ 1

σ(Uj)

∑
k

c4 exp

(
−(k − 1)2c2

1q
2c2

5

100h2p2

)

≤ 2 · c4c5fj
p

∑
k

exp

(
−(k − 1)2c2

1c
2
5

100h2

)
≤ c4c5fj

p
· 40(h+ 1)

c1c5
=

40(h+ 1)c4fj
c1p

.
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Plugging back into (52), we get

Pr[Sj = a] ≤ o(1/q2) + 40

bln qc∑
h=1

(h+ 1)e−(h−1)2/2c2
4

c1p
.

Thus, if c5 is a large enough absolute constant, there is a constant c7 such that

Pr[Si = pv + u mod q]−Pr[Sj = pv + u mod q] >
c7

p
,

for all v ∈ W , and u with |u| ≤ p
c5fi

. Lemma 57 implies that, if c5 is large enough, the resulting values of
pv + u are distinct elements of [q], and the number of such pairs is at least (fi+1 − fi) · bΩ( pfi )c which is
Ω(p), which completes the proof.

13 Lower bound for (amax, 3)-sums: Proof of Theorem 6

Theorem 6 follows from the following stronger result, which gives a lower bound for learning a weighted
sum of PBDs with weights {0 = a1, a2, a3} even if the largest support value a3 is known.

Theorem 66 (k = 3, strengthened unknown-support lower bound). Let A be any algorithm with the follow-
ing properties: algorithm A is given N , an accuracy parameter ε > 0, a value 0 < amax ∈ Z, and access
to i.i.d. draws from an unknown S = a2S2 + a3S3, where a3 is the largest prime that is at most amax} and
0 < a2 < a3. (So the values a1 = 0 and a3 are “known” to the learning algorithm A, but the value of a2

is not.) Suppose that A is guaranteed to output, with probability at least 9/10, a hypothesis distribution S̃
satisfying dTV(S, S̃) ≤ ε. Then for sufficiently large N , A must use Ω(log amax) samples even when run
with ε set to a (suitably small) positive absolute constant.

Via our reduction, Theorem 55, we obtain Theorem 66 from the following lower bound for learning a
single scaled PBD mod a3 when the scaling factor is unknown:

Theorem 67 (lower bound for learning mod a3). Let A be any algorithm with the following properties:
algorithm A is given N , an accuracy parameter ε > 0, a value 0 < amax ∈ Z, and access to i.i.d. draws
from from a distribution S′ = (a2S2 mod a3) where S2 is a PBDN , a3 is the largest prime that is at most
amax, and a2 ∈ {1, . . . , a3 − 1} is “unknown” to A. Suppose that A is guaranteed to output a hypothesis
distribution S̃′ satisfying E[dTV(S′, S̃′)] ≤ ε (where the expectation is over the random samples drawn from
S′ and any internal randomness of A). Then for sufficiently large N , A must use Ω(log amax) samples when
run with ε set to some sufficiently small absolute constant.

While Theorem 67 lower bounds the expected error of the hypothesis produced by a learning algorithm
that uses too few samples, such a lower bound is easily seen to imply an (ε, δ)-type bound as well. Thus to
prove Theorem 66 (and thus Theorem 6) it suffices to prove Theorem 67.

13.1 Proof of Theorem 67

Recall that by the Bertrand-Chebychev theorem we have a3 = Θ(amax); throughout what follows we view
a3 as a “sufficiently large” prime number. Let S2 be the distribution Bin(N ′, 1

2)+a3−
(
N ′

2 −
c
√
N ′

2

)
, where

N ′ = d
(
a3
cK

)2e and c,K > 0 are absolute constants that will be specified later. (It is helpful to think of c as
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being a modest number like, say, 10, and to think of K as being extremely large relative to c.) Note that S2

is a PBDN for N = poly(a3), and that S2 has Var[S2] = N ′/4 = σ2
S2

where σS2 = (a3)/(cK) + O(1).
Note further that nothing is “unknown” about S2 — the only thing about S′ = a2S2 that is unknown to the
learner is the value of a2.

Remark 68. For intuition, it is useful to consider the distribution S2 mod a3, and to view it as a coarse
approximation of the distribution U which is uniform over the interval {1, . . . , c

√
N ′} where c

√
N ′ ≈

a3/K; we will make this precise later.

The lower bound of Theorem 67 is proved by considering distributions S′r, 1 ≤ r ≤ a3 − 1, which are
defined as S′r := (r · S2 mod a3). The theorem is proved by applying the generalized Fano’s Inequality
(Theorem 27) to a subset of the distributions {S′r}r∈[a3−1]; recall that this requires both an upper bound on
the KL divergence and a lower bound on the total variation distance. The following technical lemma will be
useful for the KL divergence upper bound:

Lemma 69. For any 1 ≤ r1 6= r2 ≤ a3 − 1 and any j ∈ {0, 1, . . . , a3 − 1}, the ratio S′r1(j)/S′r2(j) lies in
[1/C,C] where C is a constant (that is independent of a3 but depends on c,K).

Proof. Recalling that a3 is prime, for any r ∈ [a3 − 1] and any j ∈ {0, 1, . . . , a3 − 1}, if r−1 ∈ [a3] is such
that r−1r = 1 mod a3, we have

S′r(j) = Pr[r · S2 ≡ j mod a3] = Pr[S2 ≡ jr−1 mod a3] = Θ(1) · S2(M),

where M ∈ {0, 1, . . . , N} is the integer in a3Z+ jr−1 that is closest to N/2. Since |M −N/2| ≤ a3/2 =
Θ(
√
N) and S2 = Bin(N, 1/2), standard facts about binomial coefficients imply that S2(M) =

(
N
M

)
/2N =

Θ(1)/
√
N , from which the lemma follows.

From this, recalling the definition of KL-divergence DKL(S′r1 ||S
′
r2) =

∑
i S
′
r1(i) ln

S′r1 (i)

S′r2 (i) , we easily
obtain

Corollary 70. For any 1 ≤ r1 6= r2 ≤ a3 − 1 we have DKL(S′r1 ||S
′
r2) = O(1).

Next we turn to a lower bound on the variation distance; for this we will have to consider only a restricted
subset of the distributions {S′r}r∈[a3−1], and use a number theoretic equidistribution result of Shparlinski.
To apply this result it will be most convenient for us to work with the distribution U instead of S2 (recall
Remark 68) and to bring S2 and the S′r distributions into the picture later (in Section 13.1.2) once we have
established an analogue of our desired result for some distributions related to U.

13.1.1 Equidistribution of scaled modular uniform distributions U′r.

For 1 ≤ r ≤ a3 − 1 we consider the distributions U′r := (r · U mod a3) (note the similarity with the
distributions S′r). Since for each r ∈ [a3 − 1] the distribution U′r is uniform on a Θ(1/K)-fraction of the
domain {0, 1, . . . , a3 − 1}, it is natural to expect that dTV (U′r1 ,U

′
r2) is large for r1 6= r2. To make this

intuition precise, we make the following definition.

Definition 71. Given integers r, p, Y, Z and a set X of integers, we define

Nr,p(X , Y, Z) :=

∣∣∣∣{(x, y) ∈ X × [Z + 1, Z + Y ] : r · x ≡ y (mod p)

}∣∣∣∣.
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We will use the following, which is due to Shparlinski [Shp08].

Lemma 72 ([Shp08]). For all integers p, Z,X, Y such that p ≥ 2 and 0 < X,Y < p, for any X ⊆
{1, ..., X}, we have

p∑
r=1

∣∣∣∣Nr,p(X , Y, Z)− |X | · Y
p

∣∣∣∣2 ≤ |X | · (X + Y ) · po(1).

We shall use the following corollary. Set X = {1, ..., X}. Let us define the quantity

Nr,X = |{(x, y) : x, y ∈ X , r · x ≡ y (mod p)}|.

Taking Z = 0 and Y = X , we get:

Corollary 73. For all integers p and X such that p > 0 and 0 < X < p, we have
p∑
r=1

∣∣∣∣Nr,X − X2

p

∣∣∣∣2 ≤ X2 · po(1).

This easily yields

Er∈[p]

[∣∣∣∣Nr,X − X2

p

∣∣∣∣2
]
≤ X2

p1−o(1)

which in turn implies

Prr∈[p]

[
Nr,X ≥

2X2

p

]
≤ p1+o(1)

X2
.

We specialize this bound by setting X to be dc
√
N ′e and p = a3 which gives X2

p = a3
K2 + O(1), from

which we get that

Prr∈[a3]

[
Nr,X ≥

2a3

K2

]
≤ a

o(1)
3

a3
. (53)

Using (53) it is straightforward to show that there is a large subset of the distributions {U′r}r∈[a3] any
two of which are very far from each other in total variation distance:

Theorem 74. Given any sufficiently large prime a3, there is a subset of t ≥ a1/3
3 many values {q1, . . . , qt} ⊂

[a3] such that for any qi 6= qj we have dTV(U′qi ,U
′
qj ) ≥ 1− 3

K .

Proof. To prove the theorem it suffices to show that if q1, q2 are chosen randomly from [a3] then dTV(U′qi ,U
′
qj ) ≥

1 − 3
K with probability 1 − a

o(1)
3
a3

. (From there, the theorem follows from a standard deletion argument
[ASE92].) Since a3 is prime, to show this it suffices to prove that for a randomly chosen r ∈ [a3] we have

that dTV(U,U′r) ≥ 1− 3
K with probability 1− a

o(1)
3
a3

. Observe that for a given outcome of r, since both U
and U′r are uniform distributions over their domains (X and (r · X mod a3) respectively) which are both
of size X = dc

√
N ′e, we have that dTV(U,U′r) = 1− |X∩(r·X mod a3)|

X . Moreover, we have that

Nr,X = |{(x, (rx mod a3)) : x, (rx mod a3) ∈ X}| = |X ∩ (r · X mod a3)|,
so

dTV(U,U′r) = 1−
Nr,X
X

= 1−
Nr,X
dc
√
N ′e

= 1−
Nr,X

a3/K +O(1)
,

which is at least 1 − 3
K provided that Nr,X < 2a3

K2 . So by (53) we get that dTV(U,U′r) ≥ 1 − 3
K with

probability 1− a
o(1)
3
a3

over a random r, as desired, and we are done.

65



13.1.2 Concluding the proof of Theorem 67.

Given Theorem 74 it is not difficult to argue that the related family of distributions {S′q1 , . . . ,S
′
qt} are all

pairwise far from each other with respect to total variation distance. First, recall that S2 is a Bin(N ′, 1
2)

distribution (mod a3) which has been shifted so that its mode is in the center of supp(U) and so that the
left and right endpoints of supp(U) each lie c/2 standard deviations away from its mode. From this, the
definition of S′qi , and well-known tail bounds on the Binomial distribution it is straightforward to verify
that a 1− e−Θ(c2) fraction of the probability mass of S′qi lies on supp(U′qi), the support of U′qi . Moreover,
standard bounds on the Binomial distribution imply that for any two points α, β ∈ supp(U′qi), we have that

1

Γ(c)
≤

S′qi(α)

S′qj (β)
≤ Γ(c) (54)

where Γ(c) is a function depending only on c. Let S′′r denote (S′r)supp(U′r)
, i.e. the conditional distribution

of S′r restricted to the domain supp(U′r). Recalling Theorem 74 and the fact that dTV(U′qi ,U
′
qj ) = 1 −

|supp(U′qi )∩supp(U′qj )|
|supp(U′qi )|

, by (54) we see that by choosing K to be suitably large relative to Γ(c), we can ensure

that dTV(S′′qi ,S
′′
qj ) is at least 9/10. Since dTV(S′′r ,S

′
r) ≤ e−Θ(c2), taking c to be a modest positive constant

like 10, we get that dTV(S′qi ,S
′
qj ) is at least 8/10 (with room to spare). Thus we have established:

Theorem 75. Given any sufficiently large prime a3, there is a subset of t ≥ a1/3
3 many values {q1, . . . , qt} ⊂

[a3] such that for any qi 6= qj we have dTV(S′qi ,S
′
qj ) ≥ 4/5.

All the pieces are now in place to apply Fano’s Inequality. In the statement of Theorem 27 we may take
α = 1 (by Theorem 75), β = O(1) (by Corollary 70), and ε to be an absolute constant, and Theorem 27
implies that any algorithm achieving expected error at most ε must use Ω(ln t) = Ω(ln a3) samples. This
concludes the proof of Theorem 67.

A Time complexity of evaluating and sampling from our hypotheses

Inspection of our learning algorithms reveals that any possible hypothesis distribution H that the algorithms
may construct, corresponding to any possible vector of outcomes for the guesses that the algorithms may
make, must have one of the following two forms:

(a) (see Sections 8.1 and 9.1) H is uniform over a multiset S of at most 1/ε2poly(k) many integers (see the
comment immediately after Fact 24; note that the algorithm has S).

(b) (see Lemma 34 and Definition 28) H is of the form U
Ŷ

+Z where Ŷ is a multiset of at most 1/ε2poly(k)

integers (note that the algorithm has Ŷ ) and Z =
∑K=poly(k)

a=1 paZa where Za is the uniform distribu-
tion on the interval [−ca, ca] ∩ Z (and the algorithm has K, the pa’s, and the ca’s).

It is easy to see that a draw from a type-(a) distribution can be simulated in time 1/ε2poly(k) , and likewise
it is easy to simulate an evalH oracle for such a distribution in the same time. It is also easy to see that a draw
from a type-(b) distribution can be simulated in time 1/ε2poly(k) . The main result of this appendix is Theorem
76, stated below. Given this theorem it is easy to see that a type-(b) evalH oracle can be simulated in time
1/ε2poly(k) , which is the final piece required to establish that our hypotheses can be efficiently sampled and
evaluated as required by Corollary 26.
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Theorem 76. Let H be a distribution which is of the form H = Y +
∑K

a=1 pa · Za where the distributions
Y,Z1, . . . ,ZK are independent integer valued random variables. Further,

1. Each Za is uniform on the intervals [−γa, . . . , γa] where γa ∈ Z,

2. Y is supported on a set AY of size m with the probabilities given by {αV }V ∈AY
.

Given as input the setsAY, {pa}Ka=1, {αV }V ∈AY
and {γa}Ka=1 and a point x ∈ Z, we can evaluate Pr[H =

x] in time LO(K) where L is the length of the input.

Our chief technical tool to prove this will be the following remarkable theorem of Barvinok [Bar94],
which shows that the number of integer points in a rational polytope can be computed in polynomial time
when the dimension is fixed:

Theorem 77. [Barvinok] There is an algorithm with the following property: given as input a list of m pairs
(a1, b1), . . . , (am, bm) where each ai ∈ Qd, bi ∈ Q, specifying a polytope X ⊆ Rd, X = {x ∈ Rd :
〈ai, x〉 ≤ bi}mi=1, the algorithm outputs the number of integer points in X in time LO(d) where L is the
length of the input, i.e. the description length of {ai}mi=1 and {bi}mi=1.

We will use this algorithm via the following lemma.

Lemma 78. Let H′ be a distribution which is of the form H′ = V +
∑K

a=1 pa ·Za where V, p1, . . . , pK ∈ Z
and Z1, . . . ,ZK are independent integer valued random variables and for 1 ≤ a ≤ K, Za is uniform on
[−γa, . . . , γa]. Then, given any point x ∈ Z, {pa}Ka=1, {γa}Ka=1 and V , the value Pr[H′ = x] can be
computed in time LO(K) where L is the description size of the input.

Proof. Consider the polytope defined by the following inequalities:

for 1 ≤ a ≤ k, −γa ≤ ya ≤ γa, and x− V − 0.1 ≤
K∑
a=1

pa · ya ≤ x− V + 0.1.

Then it is easy to see that if Nx is the number of integer points in the above polytope, then

Pr[H′ = x] = Nx ·
K∏
a=1

1

2γa + 1
.

Combining this observation with Theorem 77 proves the lemma.

Proof of Theorem 76. Let V ∈ AY. Then, using Lemma 78, we obtain that for HV = V +
∑K

a=1 pa · Za,
Pr[HV = x] can be computed in time LO(K). Now, observe that

Pr[H = x] =
∑
V ∈AY

Pr[HV = x] · αV .

As each term of the above sum can be computed in time LO(K), hence the total time required to compute
the above sum is bounded by LO(K) (note that L ≥ |AY|).
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[R0̈7] A. Röllin. Translated Poisson Approximation Using Exchangeable Pair Couplings. Annals
of Applied Probability, 17(5/6):1596–1614, 2007. 11, 17, 18

[Roo00] B. Roos. Binomial approximation to the Poisson binomial distribution: The Krawtchouk
expansion. Theory Probab. Appl., 45:328–344, 2000. 2

[Ros99] K.H. Rosen. Handbook of Discrete and Combinatorial Mathematics. Discrete Mathematics
and Its Applications. Taylor & Francis, 1999. 59

[RSS14] Yuval Rabani, Leonard J. Schulman, and Chaitanya Swamy. Learning mixtures of arbitrary
distributions over large discrete domains. In Innovations in Theoretical Computer Science,
ITCS 2014, pages 207–224, 2014. 1

[Shp08] I. E. Shparlinski. Distribution of modular inverses and multiples of small integers and the
sato-tate conjecture on average. Michigan Mathematical Journal, 56(1):99–111, 2008. 15,
65

[Tal94] Michel Talagrand. Sharper bounds for gaussian and empirical processes. The Annals of
Probability, pages 28–76, 1994. 17

[Tao14] T. Tao. Higher Order Fourier Analysis. Number 1 in Graduate Texts in Mathematics. Amer-
ican Mathematical Society, 2014. 13

[VW02] S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In
Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pages 113–
122, 2002. 1

[WY12] Avi Wigderson and Amir Yehudayoff. Population Recovery and Partial Identification. In 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick,
NJ, pages 390–399, 2012. 6

[Yat85] Y. G. Yatracos. Rates of convergence of minimum distance estimators and Kolmogorov’s
entropy. Annals of Statistics, 13:768–774, 1985. 21

71


	Introduction
	Previous work
	The questions we consider and our algorithmic results.
	Our lower bounds.

	Techniques for our algorithms
	Learning A-sums with |A| = k
	The case |A|=3
	Lemma 40 and limit theorems.

	Lower bound techniques
	Preliminaries
	Basic notions and useful tools from probability.
	The distributions we work with.
	Extension of the Barbour-Xia coupling lemma
	Other background results on distribution learning.
	Hypothesis selection and ``guessing''.

	Small error
	Fano's inequality and lower bounds on distribution learning.

	Tools for kernel-based learning
	Setup for the upper bound argument
	Useful structural results when all cqa's are large
	From multinomials to discretized multidimensional Gaussians
	From discretized multidimensional Gaussians to combinations of independent signed PBDs
	S' is close to a shifted weighted sum of signed PBDs
	A useful limit theorem: Simplifying by coalescing multiple large-variance scaled PBDs into one

	The learning result: Learning when |A| 4
	Learning when 0 = K+1
	Learning when 0 K.

	Learning { a1, a2, a3 }-sums
	The case that 0 = 4.
	The case that 0=3.
	The case that 0=2.
	The case that 0=1.
	Deferred proofs and learning algorithms from the earlier cases 
	Learning algorithm for weights sums of two PBDs
	Learning algorithm for weighted sums of three PBDs
	Structural lemma for decomposing a heavy distribution into a sum of weighted sums of PBDs


	Unknown-support algorithms: Proof of Theorems 3 and 4
	A reduction for weighted sums of PBDs
	Known-support lower bound for |A|=4: Proof of Theorem 5
	Proof of Theorem 5

	Lower bound for (amax,3)-sums: Proof of Theorem 6
	Proof of Theorem 67
	Equidistribution of scaled modular uniform distributions U'r.
	Concluding the proof of Theorem 67.


	Time complexity of evaluating and sampling from our hypotheses

