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Abstract

Given a set F of classifiers and a probability distribution over their domain,

one can define a metric by taking the distance between a pair of classifiers

to be the probability that they classify a random item differently. We prove

bounds on the sample complexity of PAC learning in terms of the doubling

dimension of this metric. These bounds imply known bounds on the sample

complexity of learning halfspaces with respect to the uniform distribution

that are optimal up to a constant factor.

We then prove a bound that holds for any algorithm that outputs a

classifier with zero error whenever this is possible; this bound is in terms of

the maximum of the doubling dimension and the VC-dimension of F and
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strengthens the best known bound in terms of the VC-dimension alone.

Finally, we show that there is no bound on the doubling dimension of

halfspaces in Rn in terms of n that holds independently of the domain dis-

tribution. This implies that there is no such a bound in terms of the VC-

dimension of F (in contrast with the metric dimension).

Key words: PAC learning, generalization, doubling dimension, doubling

metric, learning theory, statistical learning theory, local complexity.
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1. Introduction

A set F of classifiers and a probability distribution D over their domain

X induce a metric ρD in which the distance between classifiers is the prob-

ability that they disagree on how to classify a random object. Properties of

metrics like this have long been used for analyzing the generalization ability

of learning algorithms [10, 33]. This paper is about bounds on the number

of examples required for PAC learning in terms of the doubling dimension

[3] of this metric space.

The doubling dimension of a metric space is the least d such that any

ball can be covered by 2d balls of half its radius. The doubling dimension

has been frequently used lately in the analysis of algorithms [12, 20, 21, 18,

30, 13, 9, 22, 29, 7].

In the PAC-learning model, an algorithm is given examples

(x1, f(x1)), ..., (xm, f(xm))

of the behavior of an arbitrary member f of a known class F . The items

x1, ..., xm are chosen independently at random according toD. The algorithm
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must, with probability at least 1−δ (w.r.t. to the random choice of x1, ..., xm),

outputs a classifier whose distance from f is at most ǫ.

We show that if (F, ρD) has doubling dimension d(F,D), then F can be

PAC-learned with respect to D using

O

(

d(F,D)

ǫ
+

1

ǫ
log

1

δ

)

(1)

examples.

The ǫ-doubling dimension of a metric space is dǫ such that any ball of

radius greater than ǫ can be covered by 2dǫ balls of half its radius. We also

prove a bound of

O

(

dcǫ(F,D)

ǫ
+

1

ǫ
log

1

δ

)

(2)

for an absolute constant c.

If the VC-dimension of F and the doubling dimension of (F, ρD) are both

at most d, we show that any algorithm that outputs a classifier with zero

training error whenever this is possible PAC-learns F w.r.t. D using

O

(

d

ǫ

√

log
1

ǫ
+

1

ǫ
log

1

δ

)

(3)

examples. This compares favorably with the best possible bound of this sort

in terms of the VC-dimension alone [33, 8]:

O

(

VC(F )

ǫ
log

1

ǫ
+

1

ǫ
log

1

δ

)

. (4)

(Note, however, that the bound in terms of the VC-dimension alone holds

uniformly over all distributions D.)

We then show that if F consists of halfspaces through the origin, and

D is the uniform distribution over the unit ball in Rn, then the doubling
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dimension of (F, ρD) is O(n). Thus (1) generalizes the known bound of

O

(

n

ǫ
+

1

ǫ
log

1

δ

)

for learning halfspaces with respect to the uniform distribution [25], matching

a known lower bound for this problem [24] up to a constant factor. The con-

sequences of both (1) and (3) regarding learning halfspaces under the uniform

distribution improve on the consequence of (4). Since if there is a halfspace

with zero training error, such a halfspace can be found in polynomial-time us-

ing linear programming, the bound (3) can be achieved by a polynomial-time

algorithm, and (3) is the first improvement over (4) that can be obtained by

a polynomial-time algorithm.

Some previous analyses of the sample complexity of learning have made

use of the fact that the “metric dimension” [19] is at most the VC-dimension

[10, 14]. A bound of

dǫ(F,D) ≤ VC(F ) log
1

ǫ
+O(VC(F ))

follows from these metric dimension bounds. One might have hoped that

this could be strengthened, leading to improvements on (4) by applying (2).

We show that this is not the case: it is possible to pack (1/α)d classifiers in

a set F of VC-dimension d so that the distance between every pair is in the

interval (α, 2α]. This implies that there is a class of classifiers F such that

dǫ(F,D) ≥ VC(F ) log
1

ǫ
.

We also establish a separation using halfspaces, a hypothesis class frequently

used in practice.
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Our analysis, like others, views random examples as a means to eliminate

candidate classifiers. When the goal is to obtain a classifier with error rate

at most ǫ, candidates with error rates slightly greater than ǫ are the most

dangerous, because they are the hardest to discover. Bounding the doubling

dimension is useful for analyzing the sample complexity of learning because

it limits the richness of a subclass of F near the classifier to be learned, i.e.

the most dangerous candidates. For other analyses that exploit bounds on

such local richness, please see [32, 31, 4, 25, 26, 36]. Benedek and Itai [6]

analyzed learning by first approximating a set of hypotheses with a finite

cover, and then choosing the best performer in the cover, as we do in the

proof of (1).

2. Preliminaries

2.1. Learning

For some domain X, an example consists of a member of X, and its

classification in {0, 1}. A classifier is a mapping from X to {0, 1}. A training

set is a finite collection of examples. A learning algorithm takes as input a

training set, and outputs a classifier.

Suppose D is a probability distribution over X. Then define

ρD(f, g) = Prx∼D[f(x) 6= g(x)]

(which is a special case of the L1 metric between random variables). A learn-

ing algorithm A PAC learns F w.r.t. D with accuracy 1 − ǫ and confidence

1 − δ from m examples if, for any f ∈ F , if
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• domain elements x1, ..., xm are drawn independently at random accord-

ing to D, and

• (x1, f(x1)), ..., (xm, f(xm)) is passed to A, which outputs h,

then

Pr[ρD(f, h) > ǫ] ≤ δ.

If F is a set of classifiers, a learning algorithm is a consistent hypothesis

finder for F if it outputs an element of F that correctly classifies all of the

training data whenever it is possible to do so.

2.2. Metrics, Doubling Dimension and VC-Dimension

Let Φ = (Z, ρ) be a metric space. An α-cover for Φ is a set T ⊆ Z such

that every element of Z has a counterpart in T that is at a distance at most

α (with respect to ρ). An α-packing for Φ is a set T ⊆ Z such that every

pair of elements of T are at a distance greater than α (again, with respect to

ρ). The α-ball centered at z ∈ Z, denoted by B(z, α), consists of all t ∈ Z

for which ρ(z, t) ≤ α.

Denote the size of the largest α-packing by M(α; Φ).

Lemma 1 ([19]). For any metric space Φ = (Z, ρ), and any α > 0, there is

an α-packing for Φ that is also an α-cover.

The ǫ-doubling dimension of Φ is the least d such that, for all radii α > ǫ,

any α-ball in Φ can be covered by at most 2d α/2-balls. That is, for any

α > ǫ and any z ∈ Z, there is a C ⊆ Z such that

• |C| ≤ 2d, and

6



• {t ∈ Z : ρ(z, t) ≤ α} ⊆ ∪c∈C{t ∈ Z : ρ(c, t) ≤ α/2}.

The doubling dimension is the 0-doubling dimension.

The doubling dimension limits the extent to which members of a metric

space that are separated from one another can crowd around one element.

Lemma 2 (see [12]). Suppose Φ = (Z, ρ) is a metric space with doubling

dimension d and z ∈ Z. Then

M(α;B(z, β)) ≤

(

4β

α

)d

.

In other words, any α-packing must have at most (4β/α)d elements within

distance β of z.

The above bound is also true for d = dα/2(F,D).

The VC-dimension, VC(F ) of a set F of {0, 1}-valued functions with a

common domain is the size of the largest set x1, ..., xd of domain elements

such that

{(f(x1), ..., f(xd)) : f ∈ F} = {0, 1}d.

Haussler in [14] gives a bound for the size of largest α-packing in term of

the VC-dimension

Lemma 3. ([14]) For any metric space (F, ρD) we have

M(α;F ) ≤ e(VC(F ) + 1)

(

2e

α

)VC(F )

.

He also gave a randomized construction of a class of classifiers F that

satisfies

M(α;F ) ≥

(

1

2eα

)VC(F )

.
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In this paper we give a deterministic construction of a class of classifiers F

that satisfies

M(α;F ) ≥ (1 − α)

(

1

α

)VC(F )

while simultaneously satisfying the constraint that ρ(f, g) ≤ 2α for all f, g ∈

F .

2.3. Probability

For a function ψ and a probability distribution D, let Ex∼D[ψ(x)] be

the expectation of ψ w.r.t. D. We will shorten this to ED[ψ], and if u =

(u1, ..., um) ∈ Xm, then

Êu[ψ] =
1

m

m
∑

i=1

ψ(ui).

We will use Prx∼D, PrD, and P̂ru similarly.

In many places in the paper we will use the following Chernoff bounds

(see [27]).

Lemma 4. Let X1, . . . , Xn be independent Bernoulli trials, where

Pr[Xi = 1] ≤ pi.

Let X =
∑n

i=1Xi and µ =
∑n

i=1 pi. For any η > 0 we have

Pr[X > (1 + η)µ] <

(

eη

(1 + η)1+η

)µ

.

This implies the following: For η ≤ 2e− 1

Pr[X > (1 + η)µ] < e−µη2/4

.
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Let X1, . . . , Xn be independent Bernoulli trials, where

Pr[Xi = 1] ≥ pi.

Let X =
∑n

i=1Xi and µ =
∑n

i=1 pi. For any η > 0 we have

Pr[X < (1 − η)µ] < e−µη2/2.

3. The strongest upper bound

The proof of our strongest upper bound is an application of the peeling

technique [1] (see [31]).

Theorem 5. Suppose d(F,D) is the doubling dimension of (F, ρD). There

is an algorithm A that PAC-learns F with respect to D with accuracy 1 − ǫ

and confidence 1 − δ from

O

(

d(F,D)

ǫ
+

1

ǫ
log

1

δ

)

examples.

The above statement is also true if d(F,D) is replaced with dǫ/4(F,D).

Proof: Let G be an ǫ/4-packing for (F, ρD) that is also an ǫ/4-cover (the

existence of such a G is implied by Lemma 1).

Let f be an arbitrary target function. For any classifier g, define the error

rate of g to be Prx∼D(g(x) 6= f(x)). Consider a learning algorithm A that

takes a random training set S resulting from drawing

m = O

(

d

ǫ
+

1

ǫ
log

1

δ

)
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examples according to D, where d = dǫ/4(F,D), and classifying them using

f . The learning algorithm then outputs the element of G with minimum

error on the training set, that is

argming∈G|{(x, y) ∈ S : g(x) 6= y}|.

We wish to show that algorithm A is a PAC-learning algorithm for F

with respect to D. First, we observe that some classifier in G has small

error rate, which will imply that it is likely that some classifier in G make

incorrect classifications on a small fraction of the training data. Finally, the

main part of the argument will show that it is likely that any classifier with

small training error has a small error rate with respect to the underlying

distribution D.

Whatever the target, since G is an ǫ/4-cover of (F, ρD), some element of

G has error rate at most ǫ/4. Applying Lemma 4, O((1/ǫ)log(1/δ)) examples

are sufficient that, with probability at least 1−δ/2, this classifier is incorrect

on at most a fraction ǫ/2 of the training data. Thus, the training error of

the hypothesis output by A is at most ǫ/2 with probability at least 1 − δ/2.

Thus, the probability that the error rate of the output of A is greater than

ǫ is no more than the probability that any classifier with error rate greater

than ǫ has training error at most ǫ/2.

Define ρS(g, h) to be the fraction of examples in S on which g and h

disagree. We have

Pr[∃g ∈ G, ρD(g, f) > ǫ and ρS(g, f) ≤ ǫ/2]

≤

⌊log(1/ǫ)⌋
∑

k=0

Pr[∃g ∈ G, 2kǫ < ρD(g, f) ≤ 2k+1ǫ and ρS(g, f) ≤ ǫ/2]
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≤

⌊log(1/ǫ)⌋
∑

k=0

|{g ∈ G : 2kǫ < ρD(g, f) ≤ 2k+1ǫ}|

× max
g∈G:ρD(g,f)>2kǫ

Pr[ρS(g, f) ≤ ǫ/2]

≤

∞
∑

k=0

2(k+4)de−2kǫm/8

by Lemma 2 and Lemma 4.

Each of the following steps is a straightforward manipulation: For

d ≤
ǫm

64
and m ≥

32

ǫ
log

2

δ

we have

∞
∑

k=0

2(k+4)de−2kǫm/8 ≤ 24d

∞
∑

k=0

(

2k−2k+3
)

ǫm

64
≤ 24 ǫm

64
−6 ǫm

64 ≤ 2−
ǫm

32 ≤
δ

2
.

This completes the proof. �

4. Halfspaces and the uniform distribution

In this section, we illustrate the application of learning results concerning

the doubling dimension using the case of learning halfspaces with respect to

the uniform distribution. The last paragraph of the proof mirrors the usual

proof that a metric with a “doubling measure” has finite doubling dimension

(see [16, 21]).

Proposition 6. If Un is the uniform distribution over the unit ball in Rn,

and Hn is the set of halfspaces that go through the origin, then the doubling

dimension of (Hn, ρUn
) is O(n).

Proof: Choose h ∈ Hn and α > 0. We will show that the ball of radius α

centered at h can be covered by 2O(n) balls of radius α/2.
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Suppose UHn
is the probability distribution over Hn obtained by choosing

a normal vector w uniformly from the unit ball, and outputting the halfspace

{x : w · x ≥ 0}. The argument will be a “volume argument” using UHn
.

It is known (see Lemma 4 of [25]) that

Prg∼UHn
[ρUn

(g, h) ≤ α/4] ≥ (c1α)n−1

where c1 > 0 is an absolute constant independent of α and n. Furthermore,

Prg∼UHn
[ρUn

(g, h) ≤ 5α/4] ≤ (c2α)n−1

where c2 > 0 is another absolute constant.

Suppose we choose arbitrarily g1, g2, ... ∈ Hn that are at a distance at

most α from h, but α/2 far from one another. By the triangle inequality,

α/4-balls centered at g1, g2, ... are disjoint. Thus, the probability that a

random element of Hn is in a ball of radius α/4 centered at one of g1, ..., gN

is at least N(c1α)n−1. On the other hand, since each g1, ..., gN has distance at

most α from h, any element of an α/4 ball centered at one of them is at most

α+α/4 far from h. Thus, the union of the α/4 balls centered at g1, ..., gN is

contained in the 5α/4 ball centered at h. Thus N(c1α)n−1 ≤ (c2α)n−1, which

implies N ≤ (c2/c1)
n−1 = 2O(n), completing the proof. �

5. A bound for consistent hypothesis finders

In this section we analyze algorithms that work by finding hypotheses

with zero training error. This is one way to achieve computational efficiency,

as is the case when F consists of halfspaces.

The following lemma generalizes the Chernoff bound to hold uniformly

over a class of random variables; it differs from standard bounds of this
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type in that it provides especially strong bounds on the probability that an

empirical estimate is much larger than the true expectation. While the proof

uses standard techniques, we have included it because we do not know of a

published proof of exactly this statement.

Lemma 7. Suppose F is a set of {0, 1}-valued functions with a common do-

main X. Let d be the VC-dimension of F . Let D be a probability distribution

over X. Choose α > 0 and K ≥ 4. Then if

m ≥
c
(

d log 1
α

+ log 1
δ

)

αK logK
,

where c is an absolute constant, then

Pru∼Dm [∃f, g ∈ F, PrD(f 6= g) ≤ α but P̂ru(f 6= g) > Kα] ≤ δ.

That is, with probability at least 1 − δ, every f, g ∈ F such that PrD[f 6=

g] ≤ α satisfies P̂ru[f 6= g] ≤ Kα.

Proof: See Appendix A. �

Now we are ready for the main analysis of this section.

Theorem 8. Suppose the doubling dimension of (F, ρD) is at most d and

the VC-dimension of F is at most d. Any consistent hypothesis finder for

F PAC learns F with respect to D with accuracy 1 − ǫ and confidence 1 − δ

from

m = O

(

1

ǫ

(

d

√

log
1

ǫ
+ log

1

δ

))

examples.
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Proof: Let

α = ǫ exp

(

−

√

ln
1

ǫ

)

.

We can assume without loss of generality that ǫ is sufficiently small that

α ≤ ǫ/16.

Let f ∈ F be an arbitrary target function. As is often the case (see

[33]), we will find it useful to consider a collection of random variables that

indicate whether the hypotheses in F make errors or not, because these are

the random variables whose probabilities the learning algorithm needs to

estimate. For each h ∈ F , define ℓh : X → {0, 1} by ℓh(x) = 1 ⇔ h(x) 6=

f(x). Let ℓF = {ℓh : h ∈ F}. Notice that ℓh = h⊕f where ⊕ is the exclusive

or. Therefore, ℓF = F ⊕ f = {h⊕ f | h ∈ F}.

Since ℓg(x) 6= ℓh(x) exactly when g(x) 6= h(x), the doubling dimension of

ℓF is the same as the doubling dimension of F , that is d(ℓF , D) = d(F,D);

the VC-dimension of ℓF is also known to be the same as the VC-dimension

of F (see [33]).

Let G be an α-packing in ℓF that is also an α-cover, as in Lemma 1.

We will show that with probability at least 1 − δ any hypothesis g ∈ F

that is consistent with a training set u of size m has error at most ǫ. This is

equivalent to

Pru∼Dm [(∃g ∈ ℓF ) ED[g] > ǫ and Êu(g) = 0] ≤ δ.

We want to bound the probability of this event, which concerns all candidate

hypotheses, in terms of an event that is determined only by the effect of the

random sample on the elements in the cover G.

The first step is to argue if some classifier has a large error rate with
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respect to the underlying distribution, then so must its nearest neighbor in

the cover. For each g ∈ ℓF , let φ(g) be its nearest neighbor in G. Since

α ≤ ǫ/8, by the triangle inequality,

ED(g) > ǫ and Êu(g) = 0 ⇒ ED(φ(g)) > 7ǫ/8 and Êu(g) = 0. (5)

This statement still includes the condition Êu(g) = 0 which concerns a classi-

fier that is not in the cover. We can remedy this by observing that either φ(g)

had small error rate on the training data, or φ(g)’s training error was much

larger than g’s, and therefore φ(g) often disagreed with g on the training

data. That is,

Êu(g) = 0 ⇒ (Êu(φ(g)) ≤ ǫ/4 or P̂ru(φ(g) 6= g) > ǫ/4).

Combining this with (5), we have

Pru∈Dm [∃g ∈ ℓF ,ED(g) > ǫ but Êu(g) = 0]

≤ Pru∈Dm[∃g ∈ ℓF ,ED(φ(g)) > 7ǫ/8 but Êu(φ(g)) ≤ ǫ/4]

+Pru∈Dm [∃g ∈ ℓF , P̂ru[φ(g) 6= g] > ǫ/4]. (6)

Now, we will bound the two terms in (6) one at a time. Let us begin with

the first part. We have

Pru∈Dm [∃g ∈ ℓF ,ED(φ(g)) > 7ǫ/8 but Êu(φ(g)) ≤ ǫ/4]

= Pru∈Dm[∃g ∈ G, ED(g) > 7ǫ/8 but Êu(g) ≤ ǫ/4]

≤

⌊log(8/(7ǫ))⌋
∑

k=0

Pr[∃g ∈ G, 2k(7ǫ/8) < ρD(g, ℓf) ≤ 2k+1(7ǫ/8)

and P̂ru[f 6= g] ≤ ǫ/4]

≤
∞
∑

k=0

(

7ǫ2k+2

α

)d

e−(7/64)2kǫm,
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by Lemma 2 and Lemma 4.

Computing a geometric sum exactly as in the proof of Theorem 5, we

have that m = O(d/ǫ) suffices for

Pru∈Dm [∃g ∈ ℓF ,ED(φ(g)) > 7ǫ/8 but Êu(φ(g)) ≤ ǫ/4] ≤
(c1ǫ

α

)d

e−c2ǫm,

for absolute constants c1, c2 > 0.

By plugging in the value of α and solving, we can see that

m = O

(

1

ǫ

(

d

√

log
1

ǫ
+ log

1

δ

))

suffices for

Pru∈Dm [∃g ∈ ℓF ,ED(φ(g)) > 7ǫ/8 but Êu(φ(g)) ≤ ǫ/4] ≤ δ/2. (7)

Now, we turn to bounding the second term of (6). That is, we want to

show that it is unlikely that the training error of φ(g) is much worse than

that of g. Recall that G is an α-cover of F . Since PrD[φ(g) 6= g] ≤ α ≤ ǫ/8

for all g ∈ ℓF , applying Lemma 7 with K = ǫ/(4α) (recall that α ≤ ǫ/16, so

that K ≥ 4), we get that there is an absolute constant c > 0 such that

m ≥
c
(

d log 1
α

+ log 1
δ

)

(

ǫ
4
− α

)

log( ǫ
4α

)
(8)

also suffices for

Pru∈Dm [∃g ∈ ℓF , P̂ru(φ(g) 6= g) > ǫ/4] ≤ δ/2.

Substituting the value α into (8), it is sufficient that

m ≥
c
(

d
(

log 1
ǫ

+
√

log 1
ǫ

)

+ log 1
δ

)

ǫ
8

(√

log 1
ǫ
− log 4

) = O

(

1

ǫ

(

d

√

log
1

ǫ
+ log

1

δ

))

.

Putting this together with (7) and (6) completes the proof. �
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6. The Doubling Dimension versus the VC-dimension

In this section we give bounds on dǫ(F,D) for different classes of F . We

provide two lower bounds that imply that there is no general bound on the

doubling dimension in terms of the VC-dimension.

Haussler in [14] gave a randomized construction of a class of classifiers F

of VC-dimension d and a distribution D such that

|F | ≥

(

1

2eα

)d

and where for every two classifiers f, g ∈ F , PrD[f 6= g] ≥ α. This construc-

tion doesn’t seem to give a bound on the doubling dimension.

Our first construction is deterministic. We construct a class of classifiers

F of VC-dimension d and a distribution D such that

|F | ≥

(

1

α

)d

where for every two classifiers f, g ∈ F , 2α > PrD[f 6= g] ≥ α. This improves

Haussler’s bound and implies

d2ǫ(F,D) ≥ VC(F ) log
1

ǫ
.

Then we build another deterministic construction that holds for the class

H of halfspaces under a non-uniform distribution D. The class H will be a

subset of halfspaces over a space of dimension 2d and has VC-dimension d.

We show

d2ǫ(H,D) ≥
VC(H)

2
log

1

ǫ
.

Both of our constructions make use of finite fields [23]. We will use a few

facts about finite fields.
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Lemma 9 (see [23]). For any prime power q = pm and any positive integer

k:

• There is a finite field of size q.

• Any two finite fields of size q are isomorphic (that is, there is essentially

only one field of size of q, called GF(q)).

• Tuples of n members of GF(q) form a vector space GF(q)n over GF(q)

of dimension n.

• For any linearly independent

x1, ...,xk ∈ GF(q)n,

the subspace of GF(q)n spanned by x1, ...,xk has size qk.

6.1. A relatively tight lower bound using finite fields

Now we’re ready for the lower bound.

Theorem 10. For any prime power q and positive integer d and α = 1/q

there is a set F of classifiers and a probability distribution D over their

common domain with the following properties:

• the VC-dimension of F is at most d

• for each f, g ∈ F , α < ρD(f, g) ≤ 2α.

• |F | ≥ (1 − α)
(

1
α

)d

• the doubling dimension d(F,D) (and d2α(F,D)) is at least d log 1
α
.
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Proof: Let X = GF(q)d+1, and let F consist of indicator functions for all

subspaces of X of dimension d. In other words, F is the set of indicator

functions for {x : x · a = 0}, for all nonzero a ∈ X. Let D be the uniform

distribution over X.

First, let us prove that F has VC-dimension at most d. Choose distinct

x1, ...,xd+1 ∈ X. If they are linearly independent, then, by definition, they do

not lie in a common proper subspace of X, and therefore they cannot all be

labeled 1 by a function in F . If they are linearly dependent, then one of them

lies in the subspace spanned by the others; say xd+1 lies in subspace spanned

by x1, ...,xd. This means that any f ∈ F for which f(x1) = ... = f(xd) = 1

also has f(xd+1) = 1.

Next, Lemma 9 implies that for any f ∈ F

Prx∼D[f(x) = 1] =
qd

qd+1
= 1/q = α.

This immediately implies that for any f, g ∈ F ,

ρD(f, g) = Prx∼D[f(x) = 1 and g(x) = 0]

+Prx∼D[f(x) = 0 and g(x) = 1]

≤ 2α.

Now for the lower bound on ρD; suppose f and g are distinct members of

F and the S and T be the subspaces corresponding to f and g respectively.

Since S and T are distinct, the subspace S ∩ T must have dimension less

than d. Thus Lemma 9 implies

ρD(f, g) = Prx∼D[f(x) = 1] + Prx∼D[g(x) = 1]

−2Prx∼D[f(x) = 1 and g(x) = 1]
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= 2/q − 2 ×
qdim(S∩T )

qd+1

≥ 2/q − 2/q2

> 1/q = α,

completing the proof of the second bullet point.

Finally, let us lower bound the size of F . For any nonzero a, F has an

indicator function for S = {x : x · a = 0}. The set of all a which yield S this

way consists exactly of nonzero elements of the orthogonal complement of

S. Since S is d dimensional, its orthogonal complement is one-dimensional,

and, by Lemma 9, it has q elements. Thus,

|F | =
qd+1 − 1

q − 1
≥

(

1

α

)d

.

Therefore the doubling dimension and the 2α-doubling dimension is at least

log |F | = d log
1

α
.

This completes the proof. �

Theorem 10 implies that there is no bound on the doubling dimension

of (G, ρD) in terms of the VC-dimension of G. For any constraint on the

VC-dimension, a set G satisfying the constraint can have arbitrarily large

doubling dimension by setting the value of α in Theorem 10 arbitrarily small.

Theorem 10 matches an upper bound of Haussler [14] on M(α; (ρD, F ))

in terms of the VC-dimension of F up to a constant, despite the fact that

Haussler’s upper bound did not require that ρD(f, g) ≤ 2α for all f, g ∈ F .

6.2. A lower bound using halfspaces

Theorem 10 still leaves open the possibility of a bound on the doubling

dimension of halfspaces in Rn that holds independent of D. We show in this
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section that this is not possible.

Theorem 11. For any prime p and positive integer n and α = 1/p there is

a probability distribution D over Rn and a set Fn of halfspaces in Rn with

the following properties:

• for each pair f, g ∈ Fn, α < ρD(f, g) ≤ 2α.

• |Fn| ≥
(

1
α

)⌈n/4⌉
.

Proof: Our lower bound for halfspaces will proceed by proving a lower bound

for another concept class G, and then embedding G into halfspaces. (A

lower bound for a different learning model was proved by embedding a class

containing G into halfspaces in [17, Corollary 45].)

Let p > d be two integers such that p is a prime number and let α = 1/p.

The domain X will consist of d copies of GF(p); formally X = {1, ..., d} ×

GF(p). The elements of {i} × GF(p) will be called the ith block of X. Each

classifier in G will be the indicator function for a set of d elements of X,

one element from each block. The elements will be chosen by evaluating

polynomials over GF(p); let Z be the set of all such polynomials of degree at

most ⌈d/2⌉ − 1. For each polynomial φ ∈ Z, let fφ be the indicator function

for {(i, φ(i)) : i ∈ {1, ..., d}}. Then let

G = {fφ : φ ∈ Z}.

Since each classifier fφ has |f−1
φ (1)| ≤ d, the VC-dimension of G is at

most d and

Pr[fφ = 1] =
d

pd
= α.
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Each a0, ..., a⌈d/2⌉−1 ∈ GF(p) leads to a distinct polynomial a0 + a1x + ... +

a⌈d/2⌉−1x
⌈d/2⌉−1, so

|G| = |Z| = p⌈d/2⌉ =

(

1

α

)⌈d/2⌉

.

Now for two classifiers fφ1 and fφ2 we have

Pr[fφ1 6= fφ2 ] ≤
2d

pd
= 2α

and

Pr[fφ1 6= fφ2 ] =
2
∑d

i=1 I[φ1(i) 6= φ2(i)]

pd

=
2
∑d

i=1(1 − I[φ1(i) = φ2(i)])

pd

=
2d− 2|{1 ≤ i ≤ d | φ1(i) = φ2(i)}|

pd
.

The number of zeroes of a polynomial is bounded by its degree, so

Pr[fφ1 6= fφ2 ] ≥
2d− 2 · deg(φ1 − φ2)

pd
> α.

This shows that

d2α(G,D) ≥
d

2
log

1

α
.

We now embed the class into halfspaces (a different embedding was em-

ployed in [17]). We will assign each element of X = {1, ..., d} × GF(p) a

vector in the 2d-dimensional space. Then we show that each classifier fφ

has a halfspace representation over those vectors. (The distribution D is the

image of the uniform distribution on X after this embedding.)

Consider the 2-vectors

uj =

(

cos
2πj

p
, sin

2πj

p

)

, j = 0, 1, . . . , p− 1.
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We assign to the instance (i, j) ∈ X a 2d-vector v(i,j). To do this, we will think

of the indices {1, ..., 2d} as being divided into d blocks of size 2, corresponding

to the d blocks of X. The vector v(i,j) corresponding to (i, j) ∈ X is equal to

uj in block i and (0, 0) in the other blocks.

Let A = (A1,1, A1,2, A2,1, A2,2, . . . , Ad,1, Ad,2) be a vector of 2d coefficients.

Notice that

A · v(i,j) = (A1,1, A1,2, A2,1, A2,2, . . . , Ad,1, Ad,2) · v
(i,j)

= Ai,1 cos
2πj

p
+ Ai,2 sin

2πj

p

= (Ai,1, Ai,2) · uj (9)

depends only the coefficients in block i.

For A
(j)
1 = cos 2πj

p
and A

(j)
2 = sin 2πj

p
, we have

(A
(j)
1 , A

(j)
2 ) · uj = 1 and (A

(j)
1 , A

(j)
2 ) · uk < 1 for all k 6= j. (10)

Consider now a classifier fφ. This classifier is 1 for the vectors (i, φ(i))

and zero elsewhere. Consider the halfspace

A
(φ(1))
1 X1+A

(φ(1))
2 X2+A

(φ(2))
1 X3+A

(φ(2))
2 X4+· · ·+A

(φ(d))
1 X2d−1+A

(φ(d))
2 X2d ≥ 1.

By (9) and (10) assigning (i, φ(i)) in the halfspace we get

(A
(φ(i))
1 , A

(φ(i))
2 ) · uφ(i) ≥ 1

and therefore v(i,φ(i)) is classified as 1 in the halfspace. Assigning v(i,j) for

j 6=φ(i) in the halfspace we get

(A
(φ(i))
1 , A

(φ(i))
2 ) · uj < 1

and therefore v(i,j), j 6=φ(i) is classified as 0 in the halfspace. This completes

the proof. �
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7. Conclusion

The doubling dimension is a clean and intuitive way to identify cases in

which the local complexity of families of classifiers is limited. A number of

natural questions remain regarding the relationship between the doubling

dimension and learning.

One compelling problem is to extend the analysis of this paper to the case

in which no classifier in F has zero error. This case is complicated by the

fact that there is no single target whose neighborhood we should consider.

This might be addressed using regularization.

It also is not clear whether a bound on the VC-dimension is necessary to

obtain the sample complexity bound of Theorem 8, or whether that bound

can be improved even given a bound on the VC-dimension.

Proving meaningful lower bounds in terms of the doubling dimension

appears problematic – a pair d(F,D) can be arbitrarily large even if all the

classifiers in F are enclosed within an arbitrarily small ρD ball.

Theorem 10 shows that the doubling dimension can be much larger than

the VC-dimension. It also can be much smaller, for example when F shatters

a large set with zero probability under D.

In the context of learning, the doubling dimension bounds the maximum

extent to which candidate classifiers can crowd around a target. It may be

useful instead to consider bounds the average crowding, given a prior over

target functions. This may provide a way around the results of Section 6,

and allow a bound in terms of the VC-dimension. (A result like this would

be analogous to the bound on the density of the one-inclusion graph [15].)

Bounding the average crowding by the VC-dimension for a “least favorable
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prior” may provide a way to obtain improved general bounds on the sample

complexity of PAC learning, making progress on an open problem posed by

Ehrenfeuch, Haussler, Kearns and Valiant [11].
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A. Proof of Lemma 7

We want to bound the probability that any error rate on the sample is

much worse than the corresponding error rate with respect to the underlying

distribution. As usual [35, 34, 2, 31], we begin with a symmetrization step,

in which the underlying distribution is replaced with another sample. As in

[28], we will find it useful for this “ghost sample” to be much bigger than the

sample given to the learning algorithm.

Claim 12. There is a constant c0 such that, for m ≥ (c0/α), and for any

positive integer k,

Pru∼Dm(∃f, g ∈ F, PrD(f 6= g) ≤ α but P̂ru(f 6= g) > Kα)

≤ 2Pr
u∼D(k+1)m(∃f, g ∈ F,

1

km

km
∑

i=1

1f 6=g(ui) ≤ 2α

but
1

m

m
∑

i=1

1f 6=g(ukm+i) > Kα)).
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Proof: This proof closely follows the usual outline (see [8]). Let

J = {u ∈ X(k+1)m : ∃f, g ∈ F,
1

km

km
∑

i=1

1f 6=g(ui) ≤ 2α

but
1

m

m
∑

i=1

1f 6=g(ukm+i) > Kα}

Q =
{

u ∈ Xm : ∃f, g ∈ F, PrD(f 6= g) ≤ α but P̂ru(f 6= g) > Kα
}

.

By Fubini’s Theorem,

PrD(k+1)m(J) = Eu∼Dm(Pr
v∼Dkm((v1, ..., vkm, u1, ..., um) ∈ J))

≥ Eu∼Dm(Pr
v∼Dkm((v1, ..., vkm, u1, ..., um) ∈ J)|u ∈ Q)

×PrDm(Q) (11)

Suppose u ∈ Q, and let f0, g0 ∈ F witness this membership. Then PrD(f0 6=

g0) ≤ α, and Lemma 4 implies that there is a constant independent of α

such that m ≥ (c0/α) is sufficient for the disagreement rate between f0 and

g0 on the “ghost sample” v to be at least 2α with probability at most 1/2.

Therefore,

Pr
v∼Dkm((v1, ..., vkm, u1, ..., um) ∈ J) ≤ 1/2.

Since this is true for any u ∈ Q, (11) implies that

PrD(k+1)m(J) ≥ E(u1,...,ukm)∼Dkm(1/2)PrDm(Q) = PrDm(Q)/2,

completing the proof of this claim. �

Continuing with the proof of Lemma 7, let k = ⌈1/α⌉. Suppose Γ is the

set of permutations π on {1, ..., (k+1)m} such that π({i,m+i, ..., km+i}) =

{i,m + i, ..., km + i} for all i ∈ {1, ..., m}. That is π separately permutes
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{1, m+1, ..., km+1}, {2, m+2, ..., km+2}, and so on. Let U be the uniform

distribution over Γ. Then, because product distributions are unaffected by

permutations,

Pr
u∼D(k+1)m(∃f, g ∈ F,

1

km

km
∑

i=1

1f 6=g(ui) ≤ 2α

but
1

m

m
∑

i=1

1f 6=g(ukm+i) > Kα)

= Pr
u∼D(k+1)m,π∼U(∃f, g ∈ F,

1

km

km
∑

i=1

1f 6=g(uπ(i)) ≤ 2α

but
1

m

m
∑

i=1

1f 6=g(uπ(km+i)) > Kα)

≤ max
u∈X(k+1)m

Prπ∼U(∃f, g ∈ F,
1

km

km
∑

i=1

1f 6=g(uπ(i)) ≤ 2α

but
1

m

m
∑

i=1

1f 6=g(uπ(km+i)) > Kα).

For the time being, fix f, g ∈ F .

Choose u ∈ X(k+1)m and π ∈ Γ such that 1
km

∑km
i=1 1f 6=g(uπ(i)) ≤ 2α.

Then

1

(k + 1)m

(k+1)m
∑

i=1

1f 6=g(uπ(i))

=
1

(k + 1)m

((

km
∑

i=1

1f 6=g(uπ(i))

)

+

m
∑

i=1

1f 6=g(uπ(km+i))

)

≤
1

(k + 1)m
(2αkm+m)

≤ 3α, (12)
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since k ≥ 1/α. Now, suppose π is chosen uniformly at random according to

U . Then

E

(

1

m

m
∑

i=1

1f 6=g(uπ(km+i))

)

=
1

m

m
∑

i=1

E(1f 6=g(uπ(km+i)))

=
1

m

m
∑

i=1

1

k + 1

k+1
∑

j=1

1f 6=g(u(j−1)m+i)

≤ 3α,

by (12). Applying Lemma 4, this implies that, for our fixed f and g,

Prπ∼U

(

1

km

km
∑

i=1

1f 6=g(uπ(i)) ≤ 2α but
1

m

m
∑

i=1

1f 6=g(uπ(km+i)) > Kα)

)

≤





exp
(

K
3
− 1
)

(

K
3

)
K

3





3αm

≤ e−c1K log Kαm,

for an absolute constant c1, for all K ≥ 4.

We have

|{(z1, ..., zm+k) : ∃f, g ∈ F, ∀i, zi = 1 ⇔ f(ui) 6= g(ui)}|

≤ |{(f(z1), ..., f(zm+k), g(z1), ..., g(zm+k)) : f, g ∈ F}|

≤ ((e(k + 1)m/d)d)2,

by the Sauer-Shelah lemma. This means that

max
u∈X(k+1)m

Prπ∼U(∃f, g ∈ F,
1

km

km
∑

i=1

1f 6=g(uπ(i)) ≤ 2α
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but
1

m

m
∑

i=1

1f 6=g(uπ(km+i)) > Kα))

≤

(

e(k + 1)m

d

)2d

e−c1(K log K)αm.

From here, the usual manipulations (see Lemma 18 of [5]) complete the

proof.
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