
1

Gradient descent with identity initialization
efficiently learns

positive definite linear transformations
by deep residual networks

Peter L. Bartlett1, David P. Helmbold2 and Philip M. Long3
1UC Berkeley 2UC Santa Cruz 3Google

Keywords: Residual networks, optimization, deep networks, gradient descent.

Abstract

We analyze algorithms for approximating a function f(x) = Φx mapping <d to <d
using deep linear neural networks, i.e. that learn a function h parameterized by matrices
Θ1, ...,ΘL and defined by h(x) = ΘLΘL−1...Θ1x. We focus on algorithms that learn
through gradient descent on the population quadratic loss in the case that the distribution
over the inputs is isotropic. We provide polynomial bounds on the number of iterations
for gradient descent to approximate the least squares matrix Φ, in the case where the
initial hypothesis Θ1 = ... = ΘL = I has excess loss bounded by a small enough
constant. On the other hand, we show that gradient descent fails to converge for Φ
whose distance from the identity is a larger constant, and we show that some forms of
regularization toward the identity in each layer do not help. If Φ is symmetric positive
definite, we show that an algorithm that initializes Θi = I learns an ε-approximation of
f using a number of updates polynomial in L, the condition number of Φ, and log(d/ε).
In contrast, we show that if the least squares matrix Φ is symmetric and has a negative
eigenvalue, then all members of a class of algorithms that perform gradient descent with
identity initialization, and optionally regularize toward the identity in each layer, fail to
converge. We analyze an algorithm for the case that Φ satisfies u>Φu > 0 for all u,
but may not be symmetric. This algorithm uses two regularizers: one that maintains the
invariant u>ΘLΘL−1...Θ1u > 0 for all u, and another that “balances” Θ1, ...,ΘL so that
they have the same singular values.

1 Introduction
Residual networks (He et al., 2016) are deep neural networks in which, roughly, sub-
networks determine how a feature transformation should differ from the identity, rather
than how it should differ from zero. After enabling the winning entry in the ILSVRC
2015 classification task, they have become established as a central idea in deep net-
works.

Hardt and Ma (2017) provided a theoretical analysis that shed light on residual
networks. They showed that (a) any linear transformation with a positive determinant
and a bounded condition number can be approximated by a “deep linear network” of the
form f(x) = ΘLΘL−1...Θ1x, where, for large L, each layer Θi is close to the identity,
and (b) for networks that compose near-identity transformations this way, if the excess
loss is large, then the gradient is steep. Bartlett et al. (2018a) extended both results to
the nonlinear case, showing that any smooth, bi-Lipschitz map can be represented as
a composition of near-identity functions, and that a suboptimal loss in a composition
of near-identity functions implies that the functional gradient of the loss with respect
to a function in the composition cannot be small. These results are interesting because
they suggest that, in many cases, this non-convex objective may be efficiently optimized
through gradient descent if the layers stay close to the identity, possibly with the help
of a regularizer.

This paper describes and analyzes such algorithms for linear regression with d input
variables and d response variables with respect to the quadratic loss, the same setting
analyzed by Hardt and Ma. We abstract away sampling issues by analyzing an algorithm
that performs gradient descent with respect to the population loss. We focus on the case
that the distribution on the input patterns is isotropic. (The data may be transformed
through a preprocessing step to satisfy this constraint.)

The traditional analysis of convex optimization algorithms (see Boyd and Vanden-
berghe, 2004) provides a bound in terms of the quality of the initial solution, together
with bounds on the eigenvalues of the Hessian of the loss. For the non-convex problem
of this paper, we show that if gradient descent starts at the identity in each layer, and if
the excess loss of that initial solution is bounded by a constant, then the Hessian remains
well-conditioned enough throughout training for successful learning. Specifically, there
is a constant c0 such that, if the excess loss of the identity (over the least squares lin-
ear map) is at most c0, then back-propagation initialized at the identity in each layer
achieves loss within at most ε of optimal in time polynomial in log(1/ε), d, and L (Sec-
tion 3). On the other hand, we show that there is a constant c1 and a least squares matrix
Φ such that the identity has excess loss c1 with respect to Φ, but backpropagation with
identity initialization fails to learn Φ (Section 6).

We also show that if the least squares matrix Φ is symmetric positive definite then
gradient descent with identity initialization achieves excess loss at most ε in a num-
ber of steps bounded by a polynomial in log(d/ε), L and the condition number of Φ
(Section 4).

In contrast, for any least squares matrix Φ that is symmetric but has a negative
eigenvalue, we show that no such guarantee is possible for a wide variety of algorithms
of this type: the excess loss is forever bounded below by the square of this negative
eigenvalue. This holds for step-and-project algorithms, and also algorithms that ini-

2

tialize to the identity and regularize by early stopping or penalizing
∑

i ||Θi − I||2F
(Section 6). Both this and the previous impossibility result can be proved using a least
squares matrix Φ with a positive determinant and a good condition number. Recall that
such Φ were proved by Hardt and Ma to have a good approximation as a product of
near-identity matrices – we prove that gradient descent cannot learn them, even with
the help of regularizers that reward near-identity representations.

In Section 5 we provide a convergence guarantee for a least squares matrix Φ that
may not be symmetric, but satisfies the positivity condition u>Φu > γ for some γ > 0
that appears in the bounds. We call such matrices γ-positive. Such Φ include rotations
by acute angles. In this case, we consider an algorithm that regularizes in addition to a
near-identity initialization. After the gradient update, the algorithm performs what we
call power projection, projecting its hypothesis ΘLΘL−1...Θ1 onto the set of γ-positive
matrices. Second, it “balances” Θ1, ...,ΘL so that, informally, they contribute equally to
ΘLΘL−1...Θ1. (See Section 5 for the details.) We view this regularizer as a theoretically
tractable proxy for regularizers that promote positivity and balance between layers by
adding penalties.

While, in practice, deep networks are non-linear, analysis of the linear case can
provide a tractable way to gain insight through rigorous theoretical analysis (Saxe et al.,
2013; Kawaguchi, 2016; Hardt and Ma, 2017). We might view back-propagation in the
non-linear case as an approximation to a procedure that locally modifies the function
computed by each layer in a manner that reduces the loss as fast as possible. If a non-
linear network is obtained by composing transformations, each of which is chosen from
a Hilbert space of functions, then a step in “function space” corresponds to a step in an
(infinite-dimensional) linear space of functions.

Related work. The motivation for this work comes from the papers of Hardt and
Ma (2017) and Bartlett et al. (2018a). After the publication of this work in prelimi-
nary form (Bartlett et al., 2018b), Shamir (2018) proved that convergence can be ex-
ponentially slow even when the layers of the initial solution are not exactly equal to
the identity, but only close; he also analyzed more general loss functions and other
initialization schemes. Saxe et al. (2013) studied the dynamics of a continuous-time
process obtained by taking the step size of backpropagation applied to deep linear neu-
ral networks to zero. Kawaguchi (2016) showed that deep linear neural networks have
no suboptimal local minima. In the case that L = 2, the problem studied here has
a similar structure as problems arising from low-rank approximation of matrices, es-
pecially as regards algorithms that approximate a matrix A by iteratively improving
an approximation of the form UV . For an interesting survey on the rich literature on
these algorithms, please see Ge et al. (2017a); successful algorithms have included a
regularizer that promotes balance in the sizes of U and V . Jain et al. (2017) analyzed
approximation of the matrix square root of a symmetric positive definite matrix A by
gradient descent, providing a simple analysis when the initial solution is a rescaling of
the identity, and a more involved analysis that applies for any well-conditioned initial
solution. Taghvaei et al. (2017) studied the properties of critical points on the loss when
learning deep linear neural networks in the presence of a weight decay regularizer; they
studied networks that transform the input to the output through a process indexed by a
continuous variable, instead of through discrete layers. Lee et al. (2016) showed that,
given regularity conditions, for a random initialization, gradient descent converges to a

3

local minimizer almost surely; while their paper yields useful insights, their regularity
condition does not hold for our problem. Many papers have analyzed learning of neural
networks with non-linearities. The papers most closely related to this work analyze al-
gorithms based on gradient descent. Some of these (Andoni et al., 2014; Brutzkus and
Globerson, 2017; Ge et al., 2017b; Li and Yuan, 2017; Zhong et al., 2017; Zhang et al.,
2018; Brutzkus et al., 2018; Ge et al., 2018) analyze constant-depth networks. Daniely
(2017) showed that stochastic gradient descent learns a subclass of functions computed
by log-depth networks in polynomial time; this class includes constant-degree polyno-
mials with polynomially bounded coefficients. Other theoretical treatments of neural
network learning algorithms include Lee et al. (1996); Arora et al. (2014); Livni et al.
(2014); Janzamin et al. (2015); Safran and Shamir (2016); Zhang et al. (2016); Nguyen
and Hein (2017); Zhang et al. (2017); Orhan and Pitkow (2018), although these are less
closely related.

Our three upper bound analyses combine a new upper bound on the operator norm
of the Hessian of a deep linear network with the result of Hardt and Ma that gradients
are lower bounded in terms of the loss for near-identity matrices. They otherwise have
different outlines. The bound in terms of the loss of the initial solution proceeds by
showing that the distance from each layer to the identity grows slowly enough that
the loss is reduced before the layers stray far enough to harm the conditioning of the
Hessian. The bound for symmetric positive definite matrices proceeds by showing that,
in this case, all of the layers are the same, and each of their eigenvalues converges to
the Lth root of a corresponding eigenvalue of Φ. As mentioned above, the bound for
γ-positive matrices Φ is for an algorithm that achieves favorable conditioning through
regularization.

We expect that the theoretical analysis reported here will inform the design of prac-
tical algorithms for learning non-linear deep networks. One potential avenue for this
arises from the fact that the leverage provided by regularizing toward the identity ap-
pears to already be provided by a weaker policy of promoting the property that the
composition of layers is (potentially asymmetric) positive definite. Also, balancing sin-
gular values of the layers of the network aided our analysis; an analogous balancing of
Jacobians associated with various layers may improve conditioning in practice in the
non-linear case.

2 Preliminaries

2.1 Setting
For a joint distribution P with support contained in <d × <d and g : <d → <d, define
`P (g) = E(X,Y)∼P (||g(X)−Y ||2/2). We focus on the case that, for (X, Y) drawn from
P , the marginal onX is isotropic, with EX = 0 and EXX> = Id. For convenience, we
assume that Y = ΦX for Φ ∈ <d×d. This assumption is without loss of generality: if Φ
is the least squares matrix (so that f defined by f(X) = ΦX minimizes `P (f) among

4

linear functions), for any linear g we have

`P (g) = E‖g(X)− f(X)‖2/2 + E‖f(X)− Y ‖2/2

+ E ((g(X)− f(X))(f(X)− Y))

= E‖g(X)− f(X)‖2/2 + E‖f(X)− Y ‖2/2

= E‖g(X)− ΦX‖2/2 + E‖ΦX − Y ‖2/2,

since f is the projection of Y onto the set of linear functions of X . So assuming Y =
ΦX corresponds to setting Φ as the least squares matrix and replacing the loss `P (g) by
the excess loss

E‖g(X)− ΦX‖2/2 = E‖g(X)− Y ‖2/2− E‖ΦX − Y ‖2/2.

We study algorithms that learn linear mappings parameterized by deep networks.
The network with L layers and parameters Θ = (Θ1, . . . ,ΘL) computes the parameter-
ized function fΘ(x) = ΘLΘL−1 · · ·Θ1x, where x ∈ <d and Θi ∈ <d×d.

We use the notation Θi:j = ΘjΘj−1 · · ·Θi for i ≤ j, so that we can write fΘ(x) =
Θ1:Lx = Θi+1:LΘiΘ1:i−1x.

When there is no possibility of confusion, we will sometimes refer to loss `(fΘ)
simply as `(Θ). Because the distribution of X is isotropic, `(Θ) = 1

2
||Θ1:L−Φ||2F with

respect to the least squares matrix Φ. When Θ is produced by an iterative algorithm, we
will also refer to the loss of the tth iterate by `(t).

Definition 1. For γ > 0, a matrix A ∈ <d×d is γ-positive if, for all unit length u, we
have u>Au > γ.

2.2 Tools and background
We use ||A||F for the Frobenius norm of matrix A, ||A||2 for its operator norm, and
σmin(A) for its least singular value. For vector v, we use ||v|| for its Euclidean norm.

For a matrix A and a matrix-valued function B, define DAB(A) to be the matrix
with

(DAB(A))i,j =
∂vec(B(A))i
∂vec(A)j

,

where vec(A) is the column vector constructed by stacking the columns of A. We use
Td,d to denote the d2×d2 permutation matrix mapping vec(A) to vec(A>) forA ∈ <d×d.
ForA ∈ <n×m andB ∈ <p×q,A⊗B denotes the Kronecker product, that is, the np×mq
matrix of n×m blocks, with the i, jth block given by AijB.

We will need the gradient and Hessian of `. (The gradient, which can be computed
using backpropagation, is of course well known.) The proof is in Appendix A.

Lemma 1.

DΘi
` (fΘ)=(vec(Id))

> ((Θ>1:i−1 ⊗ (Θ1:L−Φ)>Θi+1:L

))
= vec(G)>,

5

where G is the d× d matrix given by

G
def
= Θ>i+1:L (Θ1:L − Φ) Θ>1:i−1. (1)

For i < j,

DΘj
DΘi

` (fΘ) = (Id2 ⊗ (vec(Id))
>) (Id ⊗ Td,d ⊗ Id)

(
vec(Θ>1:i−1)⊗ Id2

)
((Θ>i+1:LΘj+1:L ⊗Θ>1:j−1)Td,d + (Θ>i+1:j−1 ⊗ (Θ1:L − Φ)>Θj+1:L)).

DΘi
DΘi

` (fΘ) = (Id2 ⊗ (vec(Id))
>) (Id ⊗ Td,d ⊗ Id)

(
vec(Θ>1:i−1)⊗ Id2

)(
Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d.

3 Targets near the identity
In this section, we prove an upper bound for gradient descent in terms of the loss of the
initial solution.

3.1 Procedure and upper bound
First, set Θ(0) = (I, I, ..., I), and then iteratively update

Θ
(t+1)
i = Θ

(t)
i − η(Θ

(t)
i+1:L)>

(
Θ

(t)
1:L − Φ

)
(Θ

(t)
1:i−1)>.

Theorem 1. There are positive constants c1 and c2 and polynomials p1 and p2 such that,
if `(Θ(0)

1:L) ≤ c1, L ≥ c2, and η ≤ 1/p1(L, d, ||Φ||2), then the above gradient descent
procedure achieves `(fΘ(t)) ≤ ε within t = p2 (1/η) ln (`(0)/ε) iterations.

3.2 Proof of Theorem 1
The following lemma, which is implicit in the proof of Theorem 2.2 in Hardt and Ma
(2017), shows that the gradient is steep if the loss is large and the singular values of the
layers are not too small.

Lemma 2 (Hardt and Ma 2017). Let ∇Θ`(Θ) be the gradient of `(Θ) with respect
to any flattening of Θ. If, for all layers i, σmin(Θi) ≥ 1 − a, then ||∇Θ`(Θ)||2 ≥
4`(Θ)L(1− a)2L.

Next, we show that, if Θ(t) and Θ(t+1) are both close to the identity, then the gradient
is not changing very fast between them, so that rapid progress continues to be made.
We prove this through an upper bound on the operator norm of the Hessian that holds
uniformly over members of a ball around the identity, which in turn can be obtained
through a bound on the Frobenius norm. The proof is in Appendix B.

Lemma 3. Choose an arbitrary Θ with ||Θi||2 ≤ 1 + z for all i, and least squares
matrix Φ with ||Φ||2 ≤ (1 + z)L. Let ∇2 be the Hessian of `(fΘ) with respect to an
arbitrary flattening of the parameters of Θ. We have

||∇2||F ≤ 3Ld5(1 + z)2L.

6

Armed with Lemmas 2 and 3, let us now analyze gradient descent. Very roughly, our
strategy will be to show that the distance from the identity to the various layers grows
slowly enough for the leverage from Lemmas 2 and 3 to enable successful learning. Let
R(Θ) = maxi ||Θi − I||2. From the update, we have

||Θ(t+1)
i − I||2 ≤ ||Θ(t)

i − I||2 + η||(Θ(t)
i+1:L)>

(
Θ

(t)
1:L − Φ

)
(Θ

(t)
1:i−1)>||2

≤ ||Θ(t)
i − I||2 + η(1 +R(Θ(t)))L||Θ(t)

1:L − Φ||2
≤ ||Θ(t)

i − I||2 + η(1 +R(Θ(t)))L||Θ(t)
1:L − Φ||F .

IfR(t) = maxs≤tR(Θ(s)) (soR(0) = 0) and `(t) = 1
2
||Θ(t)

1:L − Φ||2F , this implies

R(t+ 1) ≤ R(t) + η(1 +R(t))L
√

2`(t). (2)

By Lemma 3, for all Θ on the line segment from Θ(t) to Θ(t+1), we have

||∇2
Θ||2 ≤ ||∇2

Θ||F ≤ 3Ld5 max{(1 +R(t+ 1))2L, ||Φ||22},

so that

`(t+ 1) ≤ `(t)− η||∇Θ(t)||2 +
3

2
η2Ld5 max{(1 +R(t+ 1))2L, ||Φ||22}||∇Θ(t)||2.

Thus, if we ensure

η ≤ 1

3Ld5 max{(1 +R(t+ 1))2L, ||Φ||22}
, (3)

we have `(t+ 1) ≤ `(t)− (η/2)||∇Θ(t) ||2, which, ifR(t) ≤ 1, using Lemma 2, gives

`(t+ 1) ≤
(
1− 2ηL(1−R(t))2L

)
`(t). (4)

Pick any c ≥ 1. Assume that L ≥ (4/3) ln c = c2, `(Θ(0)
1:L) ≤ ln(c)2

8c10
= c1 and

η ≤ 1
3Ld5 max{c4,||Φ||22}

. We claim that, for all t ≥ 0,

1. R(t) ≤ ηc
√

2`(0)
∑

0≤s<t exp
(
− sηL

c4

)
,

2. `(t) ≤
(
exp

(
−2tηL

c4

))
`(0).

The base case holds asR(0) = 0 and `(0) = `(0).
Before starting the inductive step, notice that for any t ≥ 0,

ηc
√

2`(0)
∑

0≤s<t

exp

(
−sηL

c4

)
≤ ηc

√
2`(0)× 1

1− exp
(
−ηL

c4

)
≤ ηc

√
2`(0)× 2c4

ηL
(since ηL

c4
≤ 1)

=
2c5
√

2`(0)

L
≤ ln c

L
≤ 3/4,

7

where the last two inequalities follow from the constraints on `(0) and L.
Using (2),

R(t+ 1) ≤ R(t) + η(1 +R(t))L
√

2`(t)

≤ R(t) + η

(
1 +

ln c

L

)L√
2`(t)

≤ R(t) + ηc
√

2`(t)

≤ R(t) + ηc
√

2`(0) exp

(
−tηL
c4

)
≤ ηc

√
2`(0)

∑
0≤s<t+1

exp

(
−sηL

c4

)
.

SinceR(t+ 1) ≤ ln c
L
< 1, the choice of η satisfies (3), and so

`(t+ 1) ≤
(
1− 2ηL(1−R(t))2L

)
`(t).

Now consider (1−R(t))2L:

ln
(
(1−R(t))2L

)
= 2L ln(1−R(t))

≥ 2L(−2R(t)) sinceR(t) ∈ [0, 3/4]

≥ 2L

(
−2

ln c

L

)
sinceR(t) ≤ ln c

L

(1−R(t))2L ≥ 1/c4.

Using this in the bound on `(t+ 1):

`(t+ 1) ≤
(
1− 2ηL(1−R(t))2L

)
`(t)

≤
(

1− 2ηL

c4

)
`(t)

≤
(

exp

(
−2ηL

c4

))(
exp

(
−2tηL

c4

))
`(0)

=

(
exp

(
−2(t+ 1)ηL

c4

))
`(0).

Solving `(0) exp
(
−2tηL

c4

)
≤ ε for t and recalling that η < 1/c4 completes the proof

of the theorem.

4 Symmetric positive definite targets
In this section, we analyze the procedure of Section 3.1 when the least squares matrix
Φ is symmetric and positive definite.

Theorem 2. There is an absolute positive constant c3 such that, if Φ is symmetric and
γ-positive with 0 < γ < 1, and L ≥ c3 ln (||Φ||2/γ), then for all η ≤ 1

L(1+||Φ||22)
,

gradient descent achieves `(fΘ(t)) ≤ ε in poly(L, ||Φ||2/γ, 1/η) log(d/ε) iterations.

Note that a symmetric matrix is γ-positive when its minimum eigenvalue is at
least γ.

8

4.1 Proof of Theorem 2
Let Φ be a symmetric, real, γ-positive matrix with γ > 0, and let Θ(0),Θ(1), ... be the
iterates of gradient descent with a step size 0 < η ≤ 1

L(1+||Φ||22)
.

Definition 2. Symmetric matrices A ⊆ <d×d are commuting normal matrices if there
is a unitary matrix U such that for all A ∈ A, U>AU is diagonal.

We will use the following well-known facts about commuting normal matrices.

Lemma 4 (Horn and Johnson 2013). If A ⊆ <d×d is a set of symmetric commuting
normal matrices and A,B ∈ A, the following hold:

• AB = BA;

• for all scalars α and β, A ∪ {αA+ βB,AB} are commuting normal;

• there is a unitary matrix U such that U>AU and U>BU are real and diagonal;

• the multiset of singular values of A is the same as the multiset of magnitudes of
its eigenvalues;

• ||A− I||2 is the largest value of |z − 1| for an eigenvalue z of A.

Lemma 5. The matrices {Φ} ∪ {Θ(t)
i : i ∈ {1, ..., L}, t ∈ Z+} are commuting normal.

For all t, Θ
(t)
1 = ... = Θ

(t)
L .

Proof. The proof is by induction. The base case follows from the fact that Φ and I are
commuting normal.

For the induction step, the fact that

{Φ} ∪
{

Θ
(s)
i : i ∈ {1, ..., L}, s ≤ t

}
∪
{

Θ
(s+1)
i : i ∈ {1, ..., L}, s ≤ t

}
are commuting normal follows from Lemma 4. The update formula now reveals that
Θ

(t+1)
1 = ... = Θ

(t+1)
L .

Now we are ready to analyze the dynamics of the learning process. Let Φ =
U>DLU be a diagonalization of Φ. Let Γ = max{1, ||Φ||2}. We next describe a sense
in which gradient descent learns each eigenvalue independently.

Lemma 6. For each t, there is a real diagonal matrix D̂(t) such that, for all i, Θ
(t)
i =

U>D̂(t)U and
D̂(t+1) = D̂(t) − η(D̂(t))L−1((D̂(t))L −DL). (5)

Proof. Lemma 5 implies that there is a real unitary matrix U such that for all i, Θ
(t)
i =

U>D̂(t)U . Applying Lemma 1, recalling that Θ
(t)
1 = ... = Θ

(t)
L , and applying the fact

that Θ
(t)
i and Φ commute, we get

Θ
(t+1)
i = Θ

(t)
i − η(Θ

(t)
i)L−1

(
(Θ

(t)
i)L − Φ

)
.

9

Replacing each matrix by its diagonalization, we get

U>D̂(t+1)U = U>D̂(t)U − η(U>(D̂(t))L−1U)
(
U>(D̂(t))LU − U>DLU

)
= U>D̂(t)U − ηU>(D̂(t))L−1

(
(D̂(t))L −DL

)
U,

and left-multiplying by U and right-multiplying by U> gives (5).

We will now analyze the convergence of each D̂(t)
kk to Dkk separately. Let us focus

for now on an arbitrary single index k, let λ = Dkk and λ̂(t) = D̂
(t)
kk .

Recalling that ||Φ||2 ≤ Γ, we have γ1/L ≤ λ ≤ Γ1/L. Also, Γ1/L = e
1
L

ln Γ ≤ e1/a ≤
1 + 2/a whenever a ≥ 1 and L ≥ a ln Γ. Similarly, γ1/L ≥ 1 − a whenever L ≥
a ln(1/γ). Thus, there are absolute constants c3 and c4 such that |1−λ| ≤ c4 ln(Γ/γ)

L
< 1

for all L ≥ c3 ln(Γ/γ).
We claim that, for all t, λ̂(t) lies between 1 and λ inclusive, so that |λ̂(t) − λ| ≤

c4 ln(Γ/γ)
L

. The base case holds because λ̂(t) = 1 and |1 − λ| ≤ c4 ln(Γ/γ)
L

. Now let us
work on the induction step. Applying (5) together with Lemma 1, we get

λ̂(t+1) = λ̂(t) + η(λ̂(t))L−1(λL − (λ̂(t))L). (6)

By the induction hypothesis, we just need to show that sign(λ̂(t+1) − λ̂(t)) = sign(λ −
λ̂(t)) and |λ̂(t+1)− λ̂(t)| ≤ |λ− λ̂(t)| (i.e., the step is in the correct direction, and does not
“overshoot”). First, to see that the step is in the right direction, note that λL ≥ (λ̂(t))L

if and only if λ ≥ (λ̂(t)), and the inductive hypothesis implies that λ̂(t), and therefore
(λ̂(t))L−1, is non-negative. To show that |λ̂(t+1) − λ̂(t)| ≤ |λ − λ̂(t)|, it suffices to
show that η(λ̂(t))L−1

∣∣∣λL − (λ̂(t))L)
∣∣∣ ≤ |λ − λ̂(t)|, which, in turn would be implied by

η ≤
∣∣∣∣ 1

(λ̂(t))L−1(
∑L−1

i=0 (λ̂(t))iλL−1−i)

∣∣∣∣ (since λL − (λ̂(t))L = (λ − λ̂(t))
∑L−1

i=0 (λ̂(t))iλL−1−i),

which follows from the inductive hypothesis and η ≤ 1
LΓ2 .

We have proved that each λ̂(t) lies between λ and 1, so that |1 − λ̂(t)| ≤ |1 − λ| ≤
c4 ln(Γ/γ).

Now, since the step is in the right direction, and does not overshoot,

|λ̂(t+1) − λ| ≤ |λ̂(t) − λ| − η(λ̂(t))L−1|λL − (λ̂(t))L|

≤ |λ̂(t) − λ|

(
1− η(λ̂(t))L−1

(
L−1∑
i=0

(λ̂(t))iλL−1−i

))
≤ |λ̂(t) − λ|

(
1− ηLγ2

)
,

since the fact that λ̂(t) lies between 1 and λ implies that λ̂(t) ≥ γ1/L. Thus, |λ̂(t) −
λ| ≤ (1− ηLγ2)

t
c4 ln(Γ/γ). This implies that, for any ε ∈ (0, 1), for any absolute

constant c5, there is a constant c6 such that, after c6
1

ηLγ2
ln
(
dL ln Γ
γε

)
steps, we have

10

|λ̂(t) − λ| ≤ c5γ
√
ε

LΓ
√
d
. Writing r = λ̂(t) − λ, this implies, if c5 is small enough, that

((λ̂(t))L − λL)2 = ((λ+r)L−λL)2

≤ Γ2

((
1+

r

λ

)L
−1

)2

≤ Γ2

(
2c5rL

λ

)2

≤ Γ2

(
2c5rL

γ

)2

≤ ε

d
.

Thus, after O
(

1
ηLγ2

ln
(
dL ln Γ
γε

))
steps, (Dkk− D̂(t)

kk)2 ≤ ε/d for all k, and therefore

`(Θ(t)) ≤ ε, completing the proof.

5 Asymmetric positive definite matrices
We have seen that if the least squares matrix is symmetric, γ-positivity is sufficient
for convergence of gradient descent. We shall see in Section 6 that positivity is also
necessary for a broad family of gradient-based algorithms to converge to the optimal
solution when the least squares matrix is symmetric. Thus, in the symmetric case,
positivity characterizes the success of gradient methods. In this section, we show that
positivity suffices for the convergence of a gradient method even without the assumption
that the least squares matrix is symmetric.

Note that the set of γ-positive (but not necessarily symmetric) matrices includes
both rotations by an acute angle and “partial reflections” of the form ax+b refl(x) where
refl(·) is a length-preserving reflection and 0 ≤ |b| < a. Since

(
u>Au

)>
= u>A>u,

a matrix A is γ-positive if and only if u>(A + A>)u ≥ 2γ for all unit length u, i.e.
A+ A> is positive definite with eigenvalues at least 2γ.

5.1 Balanced factorizations
The algorithm analyzed in this section uses a construction that is new, as far as we know,
that we call a balanced factorization. This factorization may be of independent interest.

Recall that a polar decomposition of a matrix A consists of a unitary matrix R and a
positive semidefinite matrix P such that A = RP . The principal Lth root of a complex
number whose expression in polar coordinates is reθi is r1/Leθi/L. The principal Lth
root of a matrix A is the matrix B such that BL = A, and each eigenvalue of B is the
principal Lth root of the corresponding eigenvalue of A.

Definition 3. If A is a matrix with polar decomposition RP , then A has the balanced
factorization A = A1, ..., AL where for each i,

Ai = R1/LPi, with Pi = R(L−i)/LP 1/LR−(L−i)/L,

and each of the Lth roots is the principal Lth root.

11

The motivation for balanced factorizations is as follows. We want each factor to do
a 1/L fraction of the total amount of rotation, and a 1/L fraction of the total amount of
scaling. However, the scaling done by the ith factor should be done in directions that
take account of the partial rotations done by the other factors. The following is the key
property of the balanced factorization; its proof is in Appendix C.

Lemma 7. If σ1, ..., σd are the singular values of A, and A1, ..., AL is a balanced fac-
torization of A, then the following hold: (a) A =

∏L
i=1 Ai; (b) for each i ∈ {1, ..., L},

σ
1/L
1 , ..., σ

1/L
d are the singular values of Ai.

5.2 Procedure and upper bound
The following is the power projection algorithm. It has a positivity parameter γ > 0,
and uses H = {A : ∀u s.t. ||u|| = 1, u>Au ≥ γ} as its “hypothesis space”. First, it
initializes Θ

(0)
i = γ1/LI for all i ∈ {1, ..., L}. Then, for each t, it does the following.

• Gradient Step. For each i ∈ {1, ..., L}, update:

Θ
(t+1/2)
i = Θ

(t)
i − η(Θ

(t)
i+1:L)>

(
Θ

(t)
1:L − Φ

)
(Θ

(t)
1:i−1)>.

• Power Project. Compute the projection Ψ(t+1/2) (w.r.t. the Frobenius norm) of
Θ

(t+1/2)
1:L ontoH.

• Factor. Let Θ
(t+1)
1 , ...,Θ

(t+1)
L be the balanced factorization of Ψ(t+1/2), so that

Ψ(t+1/2) = Θ
(t+1)
1:L .

Theorem 3. For any Φ such that u>Φu > γ for all unit-length u, the power projection
algorithm produces Θ(t) with `(Θ(t)) ≤ ε in poly(d, ||Φ||F , 1/γ) log(1/ε) iterations.

5.3 Proof of Theorem 3
Lemma 8. For all t, Θ

(t)
1:L ∈ H.

Proof. Θ
(0)
1:L = γI ∈ H, and, for all t, Ψ(t+1/2) is obtained by projection onto H, and

Θ
(t+1)
1:L = Ψ(t+1/2).

Definition 4. The exponential of a matrix A is exp(A)
def
=
∑∞

k=0
1
k!
Ak, and B is a

logarithm of A if A = exp(B).

Lemma 9 (Culver 1966). A real matrix has a real logarithm if and only if it is invertible
and each Jordan block belonging to a negative eigenvalue occurs an even number of
times.

Lemma 10. For all t, Θ
(t)
1:L has a real Lth root.

Proof. Since Θ
(t)
1:L ∈ H implies u>Θ

(t)
1:Lu > 0 for all u, Θ

(t)
1:L does not have a negative

eigenvalue and is invertible. By Lemma 9, Θ
(t)
1:L has a real logarithm. Thus, its real Lth

root can be constructed via exp(log(Θ
(t)
1:L)/L).

12

The preceding lemma implies that the algorithm is well-defined, since all of the
required roots can be calculated.

Lemma 11. H is convex.

Proof. Suppose A and B are in H and λ ∈ (0, 1). We have

u>(λA+ (1− λ)B)u = λu>Au+ (1− λ)u>Bu ≥ γ.

Lemma 12. For all A ∈ H, σmin(A) ≥ γ.

Proof. Let u and v be singular vectors such that u>Av = σmin(A).

γ ≤ v>Av = σmin(A)v>u ≤ σmin(A).

Lemma 13. For all t, σmin(Θ
(t)
i) ≥ γ1/L.

Proof. First, σmin(Θ
(0)
i) = γ1/L ≥ γ1/L.

Now consider t > 0. Since Ψ(t−1/2) was projected intoH, we have σmin(Ψ(t−1/2)) ≥
γ. Lemma 7 then completes the proof.

Define U(t) = max
{

maxs≤t maxi ||Θ(s)
i ||2, ||Φ||

1/L
2

}
, B(t) =

mins≤t mini σmin(Θ
(s)
i), and recall that `(t) = ||Θ(t)

1:L − Φ||2F .
Arguing as in the initial portion of Section 3.2, as long as

η ≤ 1

3Ld5U(t)2L
(7)

we have `(t + 1/2) ≤
(
1− ηLB(t)2L

)
`(t) (see Equation 4). Lemma 13 gives B(t) ≥

γ1/L, so `(t+ 1/2) ≤ (1− ηLγ2) `(t). Since Ψ(t+1/2) is the projection of Θ
(t+1/2)
1:L onto

a convex setH that contains Φ, and Θ
(t+1)
1:L = Ψ(t+1/2), (7) implies

`(t+ 1) ≤ `(t+ 1/2) ≤
(
1− ηLγ2

)
`(t). (8)

Next, we prove an upper bound on U .

Lemma 14. For all t, U(t) ≤
(√

`(t) + ||Φ||F
)1/L

.

Proof. Recall that `(t) = ||Θ(t)
1:L−Φ||2F . By the triangle inequality, ||Θ(t)

1:L||F ≤
√
`(t)+

||Φ||F . Thus ||Θ(t)
1:L||2 ≤

√
`(t) + ||Φ||F . By Lemma 7, for all i, we have ||Θ(t)

i ||2 ≤(√
`(t) + ||Φ||F

)1/L

. Since ||Φ||2 ≤ ||Φ||F , this completes the proof.

13

Note that the triangle inequality implies that `(0) ≤ ||Θ(0)
1:L||2F + ||Φ||2F ≤ γ2d +

||Φ||2F . Since σmin(Φ) ≥ γ, we have ||Φ||2F ≥ γ2d, so `(t) ≤ 2||Φ||2F and U(t) ≤
(3||Φ||2)1/L. Now, if we set η = 1

cLd5||Φ||2F
, for a large enough absolute constant c, then

(7) is satisfied, so that (8) gives `(t+ 1) ≤
(

1− γ2

cd5||Φ||2F

)
`(t) and the power projection

algorithm achieves `(t+ 1) ≤ ε after

O

(
d5||Φ||2F
γ2

log

(
`(0)

ε

))
= O

(
d5||Φ||2F
γ2

log

(
||Φ||2F
ε

))
updates.

6 The Necessity of Positive Definite Targets
In this section, we show that positive definite Φ are necessary for several gradient de-
scent algorithms with different kinds of regularization to minimize the loss. One family
of algorithms that we will analyze is parameterized by a function ψ mapping the number
of inputs d and the number of layers L to a radius ψ(d, L), step sizes ηt and initialization
parameter γ ≥ 0. In particular, a ψ-step-and-project algorithm is any instantiation of
the following algorithmic template.

Initialize each Θ
(0)
i = γ1/LI for some γ ≥ 0 and iterate:

• Gradient Step. For each i ∈ {1, ..., L}, update:

Θ
(t+1/2)
i = Θ

(t)
i − ηt(Θ

(t)
i+1:L)>

(
Θ

(t)
1:L − Φ

)
(Θ

(t)
1:i−1)>.

• Project. Set each Θt+1
i to the projection of Θ

t+1/2
i onto {A : ||A − I||2 ≤

ψ(d, L)}.

We will also show that Penalty Regularized Gradient Descent which uses gradient
descent with any step sizes ηt on the regularized objective `(Θ) + κ

2

∑
i ||I −Θ||2F also

fails to minimize the loss.
Both results use the simple observation that when Θ1:L and Φ are mutually diago-

nalizable then

||Θ1:L − Φ||2F = ||U>D̂U − U>DU ||2F =
d∑
j=1

(D̂jj −Djj)
2,

where the Dii are the eigenvalues of Φ.

Theorem 4. If the least squares matrix Φ is symmetric then Penalty Regularized Gra-
dient Descent produces hypotheses Θ

(t)
1:L that are commuting normal with Φ.

In addition, if Φ has a negative eigenvalue −λ and L is even, then `(Θ(t)) ≥ λ2/2
for all t.

14

Proof. For all t, Penalty Regularized Gradient Descent produces Θ
(t+1)
i = (1−κ)Θ

(t)
i +

κI − ηt(Θ(t)
i+1:L)>

(
Θ

(t)
1:L − Φ

)
(Θ

(t)
1:i−1)>. Thus, by induction, the Θ

(t)
i are matrix poly-

nomials of Φ, and therefore they are all commuting normal. As in Lemmas 5 and 6, each
Θ

(t)
i is the same U>D̃(t)U and Θ

(t)
1:L = U>(D̃(t))LU . Since L is even, each (D̃(t))Ljj ≥ 0,

so `(Θ(t)) = 1
2
||Θ(t)

1:L − Φ||2F ≥ λ2/2.

To analyze step-and-project algorithms, it is helpful to first characterize the Project
step. (Lefkimmiatis et al. (2013) proved a similar lemma.)

Lemma 15. Let X be a symmetric matrix and let U>DU be its diagonalization.
For a > 0, let Y be the Frobenius norm projection of X onto Ba = {A :

A is symmetric psd and ||A − I||2 ≤ a}. Then Y = U>D̃U where D̃ is obtained from
D by projecting all of its diagonal elements onto [1− a, 1 + a].

Thus {X, Y } are symmetric commuting normal matrices.

Proof. First, if X ∈ Ba, then Y = X and we are done.
Assume X 6∈ Ba. Clearly U>D̃U ∈ Ba, so we just need to show that any member

of Ba is at least as far from X as U>D̃U is. Let Λ be the multiset of eigenvalues of
X (with repetitions) that are not in [1 − a, 1 + a], and for each λ ∈ Λ, let eλ be the
adjustment to λ necessary to bring it to [1−a, 1+a]; i.e., so that λ+eλ is the projection
of λ onto [1− a, 1 + a].

If uλ is the eigenvector associated with λ, we have U>D̃U − X =
∑

λ∈Λ eλuλu
>
λ ,

so that ||U>D̃U −X||2F =
∑

λ∈Λ e
2
λ.

Let Z be an arbitrary member of Ba. We would like to show that ||Z − X||2F ≥∑
λ∈Λ e

2
λ. Since Z ∈ Ba, we have ||Z − I||2 ≤ a. ||Z − I||2 is the largest singular value

of Z−I so, for any unit length vector, in particular some uλ for λ ∈ Λ, |u>λ (Z−I)uλ| =
|u>λZuλ−1| ≤ a, which implies u>λZuλ ∈ [1−a, 1+a]. SinceU is unitaryU>(X−Z)U
has the same eigenvalues as X − Z, and, since the Frobenius norm is a function of the
eigenvalues, ||U>(X −Z)U ||F = ||X −Z||F . But since u>λZuλ ∈ [1− a, 1 + a] for all
λ ∈ Λ, just summing over the diagonal elements, we get ||U>(X−Z)U ||2F ≥

∑
λ∈Λ e

2
λ,

completing the proof.

Theorem 5. If the least squares matrix Φ is symmetric then ψ-step-and-project algo-
rithms produce hypotheses Θ

(t)
1:L that are commuting normal with Φ.

In addition, if Φ has a negative eigenvalue −λ and either L is even or ψ(L, d) ≤ 1,
then `(Θ(t)) ≥ λ2/2 for all t.

Proof. As in Lemmas 5 and 6, the Θ
(t+1/2)
i are identical and mutually diagonalizable

with Φ. Lemma 15 shows that this is preserved by the projection step. Thus there is a
real diagonal D̃(t) such that each Θ

(t)
i = U>D

(t)
i U , so Θ

(t)
1:L = U>(D̃(t))LU .

When L is even, each (D̃(t))L)j,j ≥ 0. When ψ(d, L) ≤ 1 then the projection
ensures that the elements of D̃(t) are non-negative, and thus each (D̃(t))L)j,j ≥ 0. In
either case, `(Θ(t)) = 1

2
||Θ(t)

1:L − Φ||2F ≥ λ2/2.

One choice of Φ that satisfies the requirements of Theorems 4 and 5 is Φ =
diag(−λ, 1, 1, ..., 1). For constant λ, the loss of Θ(0) = (I, I, ..., I) is a constant for

15

this target. Another choice is Φ = diag(−λ,−λ, 1, 1, ..., 1), which has a positive deter-
minant.

The proofs in this section exploit the fact that the layers are initialized to multiples
of the identity; this greatly simplifies the iterates. Similar behavior has been identified
when gradient descent is used for matrix factorization (Jain et al., 2017).

After the publication of an earlier version of this paper (Bartlett et al., 2018b),
Shamir (2018) analyzed learning in one-dimensional deep linear networks with near-
identity initialization. That paper shows, when starting from a modest random perturba-
tion of the identity and learning a Φ with negative eigenvalues, the number of iterations
needed to reach a good solution is exponential in the number of layers.

Here we give a Corollary of Theorems 4 and 5 that provides an alternative treatment
of near-identity initialization. A near-identity ψ-step-and-project algorithm has an ad-
ditional parameter δ > 0; it initializes each layer to a member of an δ-ball centered I ,
and otherwise satisfies the constraints on a ψ-step-and-project algorithm. Define a near-
identity penalty regularized gradient descent algorithm analogously. We now consider
learning an arbitrary (but fixed) deep network as described in Section 2.1.

Corollary 1. If the least squares matrix Φ is symmetric and its least eigenvalue is λ > 0,
then

• for any t ∈ N , any ε > 0 and any near-identity penalty regularized gradient
descent algorithm, there is δ > 0 such that, if ||Θ(0)

i − I||F ≤ δ for all i, then
`(Θ(t)) ≥ λ2/2− ε, and

• for any t ∈ N , any ε > 0 and any near-identity ψ-step-and-project algorithm A,
there is δ > 0 such that, if ||Θ(0)

i − I||F ≤ δ for all i, then `(Θ(t)) ≥ λ2/2− ε.

Proof. Let A be a near-identity penalty regularized gradient descent algorithm or a
near-identity ψ-step-and-project algorithm, and let Θ(t) be A’s parameters after itera-
tion t starting with the near-identity parameters Θ(0). The updated parameters of A
are a continuous function of its pre-update parameters. Thus, for every t, `(Θ(t)) is
a continuous function of Θ(0). Now consider starting A with the initial parameters
Ξ(0) = (I, I, . . . I), and let Ξ(t) be the parameters after t updates. By Theorem 4 or 5,
`(Ξ(t)) ≥ λ2/2. From the continuity of the updates, for each t there is a δt > 0 such
that, if ||Θ(0)

i − I||2F < δt, then |`(Θ(t))− `(Ξ(t))| ≤ ε completing the proof.

Acknowledgements
We thank Yair Carmon, Nigel Duffy, Matt Feiszli, Roy Frostig, Vineet Gupta, Moritz
Hardt, Tomer Koren, Antoine Saliou, Hanie Sedghi, Yoram Singer and Kunal Talwar
for valuable conversations.

Peter Bartlett gratefully acknowledges the support of the NSF through grant IIS-
1619362 and of the Australian Research Council through an Australian Laureate Fel-
lowship (FL110100281) and through the Australian Research Council Centre of Excel-
lence for Mathematical and Statistical Frontiers (ACEMS).

16

A Proof of Lemma 1
We rely on the following facts (Horn, 1986; Harville, 1997).

Lemma 16. For compatible matrices (and, where m,n, p, q, r, s are mentioned, A ∈
<m×n, B ∈ <p×q, X ∈ <r×s):

A⊗ (B ⊗ E) = (A⊗B)⊗ E,
AC ⊗BD = (A⊗B)(C ⊗D),

(A⊗B)> = A> ⊗B>,
vec(AXB) = (B> ⊗ A)vec(X),

Tm,nvec(A)
def
= vec(A>),

Tn,mTm,n = Imn,

Tm,n = T>n,m,

T1,n = Tn,1 = In,

DX(A(B(X))) = DB(A(B(X)))DX(B(X)),

DX(A(X)B(X)) = (B(X)> ⊗ Im)DXA(X) + (Iq ⊗ A(X))DXB(X),

DX(A(X)T) = Tn,mDX(A(X)),

DX(AXB) = B> ⊗ A,
DA(A⊗B) = (In ⊗ Tq,m ⊗ Ip)(Imn ⊗ vec(B))

= (Inq ⊗ Tm,p)(In ⊗ vec(B)⊗ Im),

DB(A⊗B) = (In ⊗ Tq,m ⊗ Ip)(vec(A)⊗ Ipq)
= (Tp,q ⊗ Imn)(Iq ⊗ vec(A)⊗ Ip).

Armed with Lemma 16, we now prove Lemma 1. We have

DΘi
fΘ(x) = DΘi

(Θi+1:LΘiΘ1:i−1x) = (Θ1:i−1x)> ⊗Θi+1:L.

Again, from Lemma 16

DΘi

(
DΘj

fΘ(x)
)

= DΘi

(
(Θ1:j−1x)> ⊗Θj+1:L

)
= DΘ1:j−1x

(
(Θ1:j−1x)> ⊗Θj+1:L

)
DΘi

(Θ1:j−1x)

(by the chain rule, since i < j)

= DΘ1:j−1x

((
(Θ1:j−1x)⊗Θ>j+1:L

)>)(
(Θ1:i−1x)> ⊗Θi+1:j−1

)
.

(9)

Define P = Θ1:j−1x and Q = Θj+1:L, so that P ∈ <d×1 and Q ∈ <d×d. We have

DP

((
P ⊗Q>

)>)
= Td2,dDP

(
P ⊗Q>

)
= Td2,d(I1 ⊗ Td,d ⊗ Id)(Id ⊗ vec(QT))

= Td2,d(Td,d ⊗ Id)(Id ⊗ vec(Q>)).

17

Substituting back into (9), we get

DΘi

(
DΘj

fΘ(x)
)

= Td2,d(Td,d ⊗ Id)(Id ⊗ vec(Θ>j+1:L))
(

(Θ1:i−1x)> ⊗Θi+1:j−1

)
.

The product rule in Lemma 16 gives, for each i,

DΘi
` (fΘ) = E(DΘi

(`(fΘ(X)))

= E(DΘi
(
1

2
(fΘ(X)− ΦX)>(fΘ(X)− ΦX)))

= E(((Θ1:L − Φ)X)>DΘi
fΘ(X))

= E
(

((Θ1:L − Φ)X)>
(

(Θ1:i−1X)> ⊗Θi+1:L

))
= E

(
(I1 ⊗ ((Θ1:L − Φ)X)>)

(
(Θ1:i−1X)> ⊗Θi+1:L

))
= E

((
(Θ1:i−1X)> ⊗ ((Θ1:L − Φ)X)>Θi+1:L

))
= E

((
X>Θ>1:i−1

)
⊗
(
X>(Θ1:L − Φ)>Θi+1:L

))
= E

(
(X> ⊗X>)

(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

))
= E ((X ⊗X)vec(1))>

(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

)
= E

(
vec(XX>)

)> (
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

)
= (vec(Id))

T
(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

)
.

Hence,

(DΘi
` (fΘ))> =

(
Θ1:i−1 ⊗Θ>i+1:L(Θ1:L − Φ)

)
(vec(Id))

= vec
(
Θ>i+1:L(Θ1:L − Φ)IdΘ

>
1:i−1

)
.

Also, recalling that i < j, we have

DΘj
DΘi

` (fΘ) = DΘj

(
(vec(Id))

T
(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

))
= (Id2 ⊗ (vec(Id))

T)DΘj

(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

)
= (Id2 ⊗ (vec(Id))

T) (Id ⊗ Td,d ⊗ Id)
(
vec(Θ>1:i−1)⊗ Id2

)
DΘj

(
(Θ1:L − Φ)>Θi+1:L

)
.

Continuing with the subproblem,

DΘj

(
(Θ1:L − Φ)>Θi+1:L

)
= (Θ>i+1:L ⊗ Id)DΘj

(
(Θ1:L − Φ)>

)
+ (Id ⊗ (Θ1:L − Φ)>)DΘj

(Θi+1:L)

= (Θ>i+1:L ⊗ Id)DΘj

(
Θ>1:L

)
+ (Id ⊗ (Θ1:L − Φ)>)DΘj

(Θi+1:L)

= (Θ>i+1:L ⊗ Id)
(
Θj+1:L ⊗Θ>1:j−1

)
DΘj

(Θ>j)

+ (Id ⊗ (Θ1:L − Φ)>)
(
Θ>i+1:j−1 ⊗Θj+1:L

)
= (Θ>i+1:L ⊗ Id)

(
Θj+1:L ⊗Θ>1:j−1

)
Td,d

+ (Id ⊗ (Θ1:L − Φ)>)
(
Θ>i+1:j−1 ⊗Θj+1:L

)
=
(
Θ>i+1:LΘj+1:L ⊗Θ>1:j−1

)
Td,d

+
(
Θ>i+1:j−1 ⊗ (Θ1:L − Φ)>Θj+1:L

)
.

18

Finally,

DΘi
DΘi

` (fΘ) = DΘi

(
(vec(Id))

T
(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

))
= (Id2 ⊗ (vec(Id))

T)DΘi

(
Θ>1:i−1 ⊗ (Θ1:L − Φ)>Θi+1:L

)
= (Id2 ⊗ (vec(Id))

T) (Id ⊗ Td,d ⊗ Id)(
vec(Θ>1:i−1)⊗ Id2

)
DΘi

(
(Θ1:L − Φ)>Θi+1:L

)
and

DΘi

(
(Θ1:L − Φ)>Θi+1:L

)
= (Θ>i+1:L ⊗ Id)DΘi

(
(Θ1:L − Φ)>

)
= (Θ>i+1:L ⊗ Id)DΘi

(
Θ>1:L

)
= (Θ>i+1:L ⊗ Id)

(
Θi+1:L ⊗Θ>1:i−1

)
DΘi

(Θ>i)

= (Θ>i+1:L ⊗ Id)
(
Θi+1:L ⊗Θ>1:i−1

)
Td,d

=
(
Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d.

B Proof of Lemma 3
We have

||∇2||2F = 2
∑
i<j

||DΘj
DΘi

`(fΘ)||2F +
∑
i

||DΘi
DΘi

`(fΘ)||2F . (10)

Let’s start with the easier term. Choose Θ such that ||Θi − I||2 ≤ z for all i. We have

||DΘi
DΘi

` (fΘ) ||F =
∣∣∣∣(Id2⊗(vec(Id))

>) (Id⊗Td,d⊗Id)
(
vec(Θ>1:i−1)⊗Id2

)(
Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

≤
∣∣∣∣(Id2 ⊗ (vec(Id))

>) (Id ⊗ Td,d ⊗ Id)
∣∣∣∣
F

×
∣∣∣∣(vec(Θ>1:i−1)⊗Id2

) (
Θ>i+1:LΘi+1:L⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

= d3/2
∣∣∣∣(vec(Θ>1:i−1)⊗ Id2

)(
Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

≤ d3/2
∣∣∣∣(vec(Θ>1:i−1)⊗ Id2

)∣∣∣∣
F

×
∣∣∣∣(Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

= d7/2
∣∣∣∣vec(Θ>1:i−1)

∣∣∣∣
F

∣∣∣∣(Θ>i+1:LΘi+1:L⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

= d7/2 ||Θ1:i−1||F
∣∣∣∣(Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

≤ d4 ||Θ1:i−1||2
∣∣∣∣(Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

≤ d4(1 + z)i−1
∣∣∣∣(Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)
Td,d
∣∣∣∣
F

= d4(1 + z)i−1
∣∣∣∣(Θ>i+1:LΘi+1:L ⊗Θ>1:i−1

)∣∣∣∣
F

= d4(1 + z)i−1
∣∣∣∣Θ>i+1:LΘi+1:L

∣∣∣∣
F
×
∣∣∣∣Θ>1:i−1

∣∣∣∣
F

≤ d5(1 + z)i−1
∣∣∣∣Θ>i+1:LΘi+1:L

∣∣∣∣
2
×
∣∣∣∣Θ>1:i−1

∣∣∣∣
2

≤ d5(1 + z)2(L−1).

19

Similarly,

||DΘj
DΘi

` (fΘ) ||F =
∣∣∣∣(Id2⊗(vec(I))>) (Id⊗Td,d⊗Id)

(
vec(Θ>1:i−1)⊗Id2

)((
Θ>i+1:LΘj+1:L ⊗Θ>1:j−1

)
Td,d

+
(
Θ>i+1:j−1 ⊗ (Θ1:L − Φ)>Θj+1:L

))∣∣∣∣
F

≤ d4(1 + z)i−1
∣∣∣∣ (Θ>i+1:LΘj+1:L ⊗Θ>1:j−1

)
Td,d

+
(
Θ>i+1:j−1 ⊗ (Θ1:L − Φ)>Θj+1:L

) ∣∣∣∣
F

≤ d4(1 + z)i−1
(∣∣∣∣(Θ>i+1:LΘj+1:L ⊗Θ>1:j−1

)
Td,d
∣∣∣∣
F

+
∣∣∣∣(Θ>i+1:j−1 ⊗ (Θ1:L − Φ)>Θj+1:L

)∣∣∣∣
F

)
≤ d4(1 + z)i−1

(
d(1 + z)2L−1−i

+
∣∣∣∣(Θ>i+1:j−1 ⊗ (Θ1:L − Φ)>Θj+1:L

)∣∣∣∣
F

)
= d4(1 + z)i−1

(
d(1 + z)2L−1−i

+ ||Θi+1:j−1||F ×
∣∣∣∣(Θ1:L − Φ)>Θj+1:L

∣∣∣∣
F

)
≤ d4(1 + z)i−1

(
d(1 + z)2L−1−i + 2d(1 + z)2L−1−i)

= 3d5(1 + z)2L−2.

Putting these together with (10), we get ||∇2||2F ≤ L29d10(1 + z)4L, so that

||∇2||F ≤ 3Ld5(1 + z)2L.

C Proof of Lemma 7
Recall that a matrix M is unitary if its inverse is its conjugate-transpose (M−1 = M∗)
and the polar decomposition of a matrix A consists of a unitary matrix R and a positive
semidefinite matrix P such that A = RP .

Lemma 17. (See, e.g., Horn and Johnson, 2013).

• A matrix is unitary if and only if all of its eigenvalues have magnitude 1.

• Every unitary matrix is normal and non-singular.

• A normal matrix with eigenvalues λ1, ..., λd, has singular values |λ1|, ..., |λd|.

Lemma 18. If matrix M is invertible and normal with singular values σ1, ..., σd, then,
for any positive integer L, the singular values of M1/L are σ1/L

1 , ..., σ
1/L
d .

Proof. Follows from Lemma 17 together with the fact that raising a non-singular matrix
to a power results in raising its eigenvalues to the same power.

20

Lemma 19. If matrix M is unitary, then M1/L is unitary, and thus M i/L and (M∗)i/L

are unitary for any non-negative integer i.

Proof. Follows from Lemmas 17 and 18.

Lemma 20. If matrix U is unitary and M1 = UM2 (or M1 = M2U) then M1 and M2

have the same singular values.

Proof. Follows from M∗
1M1 = M∗

2M2 (or M1M
∗
1 = M2M

∗
2).

Recall that in a balanced factorization of A with polar decomposition A = RP ,
each Ai = R1/LR(L−i)/LP 1/L(R∗)(L−i)/L.

Lemma 21. If σ1, ..., σd are the singular values of A, and A =
∏L

i=1 Ai is a bal-
anced factorization of A, then σ

1/L
1 , ..., σ

1/L
d are the singular values of Ai, for each

i ∈ {1, ..., L}.

Proof. Since R is unitary, the singular values of A and P are the same by Lemma 20.
Repeated use of Lemma 20 also shows that each Ai has the same singular values as
P 1/L. Lemma 18 completes the proof.

Lemma 22. If A1, ..., AL is a balanced factorization of A, then

A =
L∏
i=1

Ai.

Proof. We have:

A = RP

= R1/LR(L−1)/L P 1/LR∗(L−1)/LR(L−1)/L P (L−1)/L

= A1 R
(L−1)/L P (L−1)/L

= A1 R
1/LR(L−2)/L P 1/LR∗(L−2)/LR(L−2)/L P (L−2)/L

= A1A2 R
(L−2)/LP (L−2)/L

...

=

(
L−1∏
i−1

Ai

)
R1/LP 1/L =

L∏
i=1

Ai.

References
Andoni, A., Panigrahy, R., Valiant, G., and Zhang, L. (2014). Learning polynomials

with neural networks. In ICML.

Arora, S., Bhaskara, A., Ge, R., and Ma, T. (2014). Provable bounds for learning some
deep representations. In International Conference on Machine Learning, pages 584–
592.

21

Bartlett, P. L., Evans, S. N., and Long, P. M. (2018a). Representing smooth functions
as compositions of near-identity functions with implications for deep network opti-
mization. arXiv preprint arXiv:1804.05012.

Bartlett, P. L., Helmbold, D. P., and Long, P. M. (2018b). Gradient descent with iden-
tity initialization efficiently learns positive definite linear transformations. In ICML,
volume 80 of JMLR Workshop and Conference Proceedings, pages 520–529.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press, Cambridge, UK.

Brutzkus, A. and Globerson, A. (2017). Globally optimal gradient descent for a Conv-
Net with Gaussian inputs. In Precup, D. and Teh, Y. W., editors, Proceedings of
the 34th International Conference on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 605–614, International Convention Centre,
Sydney, Australia. PMLR.

Brutzkus, A., Globerson, A., Malach, E., and Shalev-Shwartz, S. (2018). SGD learns
over-parameterized networks that provably generalize on linearly separable data.
ICLR.

Culver, W. J. (1966). On the existence and uniqueness of the real logarithm of a matrix.
Proceedings of the American Mathematical Society, 17(5):1146–1151.

Daniely, A. (2017). SGD learns the conjugate kernel class of the network. NIPS.

Ge, R., Jin, C., and Zheng, Y. (2017a). No spurious local minima in nonconvex low
rank problems: A unified geometric analysis. arXiv preprint arXiv:1704.00708.

Ge, R., Lee, J. D., and Ma, T. (2017b). Learning one-hidden-layer neural networks with
landscape design. arXiv preprint arXiv:1711.00501.

Ge, R., Lee, J. D., and Ma, T. (2018). Learning one-hidden-layer neural networks with
landscape design. ICLR.

Hardt, M. and Ma, T. (2017). Identity matters in deep learning. ICLR.

Harville, D. A. (1997). Matrix algebra from a statistician’s perspective, volume 1.
Springer.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In CVPR, pages 770–778.

Horn, R. A. (1986). Topics in Matrix Analysis. Cambridge University Press, New York,
NY, USA.

Horn, R. A. and Johnson, C. R. (2013). Matrix analysis. Cambridge University Press.
Second edition.

22

Jain, P., Jin, C., Kakade, S. M., and Netrapalli, P. (2017). Global convergence of non-
convex gradient descent for computing matrix squareroot. In AISTATS, pages 479–
488.

Janzamin, M., Sedghi, H., and Anandkumar, A. (2015). Beating the perils of non-
convexity: Guaranteed training of neural networks using tensor methods. arXiv
preprint arXiv:1506.08473.

Kawaguchi, K. (2016). Deep learning without poor local minima. In Advances in
Neural Information Processing Systems, pages 586–594.

Lee, J. D., Simchowitz, M., Jordan, M. I., and Recht, B. (2016). Gradient descent
only converges to minimizers. In Feldman, V., Rakhlin, A., and Shamir, O., editors,
29th Annual Conference on Learning Theory, volume 49 of Proceedings of Machine
Learning Research, pages 1246–1257, Columbia University, New York, New York,
USA. PMLR.

Lee, W. S., Bartlett, P. L., and Williamson, R. C. (1996). Efficient agnostic learning
of neural networks with bounded fan-in. IEEE Transactions on Information Theory,
42(6):2118–2132.

Lefkimmiatis, S., Ward, J. P., and Unser, M. (2013). Hessian Schatten-norm reg-
ularization for linear inverse problems. IEEE transactions on image processing,
22(5):1873–1888.

Li, Y. and Yuan, Y. (2017). Convergence analysis of two-layer neural networks with relu
activation. In Advances in Neural Information Processing Systems, pages 597–607.

Livni, R., Shalev-Shwartz, S., and Shamir, O. (2014). On the computational efficiency
of training neural networks. In Advances in Neural Information Processing Systems,
pages 855–863.

Nguyen, Q. and Hein, M. (2017). The loss surface of deep and wide neural networks.
In ICML, pages 2603–2612.

Orhan, A. E. and Pitkow, X. (2018). Skip connections eliminate singularities. ICLR.

Safran, I. and Shamir, O. (2016). On the quality of the initial basin in overspecified
neural networks. In International Conference on Machine Learning, pages 774–782.

Saxe, A. M., McClelland, J. L., and Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

Shamir, O. (2018). Exponential convergence time of gradient descent for one-
dimensional deep linear neural networks. arXiv preprint arXiv:1809.08587.

Taghvaei, A., Kim, J. W., and Mehta, P. (2017). How regularization affects the critical
points in linear networks. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30, pages 2502–2512. Curran Associates, Inc.

23

Zhang, Q., Panigrahy, R., and Sachdeva, S. (2018). Electron-proton dynamics in deep
learning. ITCS.

Zhang, Y., Lee, J., Wainwright, M., and Jordan, M. (2017). On the learnability of fully-
connected neural networks. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, pages 83–91.

Zhang, Y., Lee, J. D., and Jordan, M. I. (2016). l1-regularized neural networks are
improperly learnable in polynomial time. In International Conference on Machine
Learning, pages 993–1001.

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., and Dhillon, I. S. (2017). Recovery guar-
antees for one-hidden-layer neural networks. In ICML, pages 4140–4149.

24

